Crossref Citations
This article has been cited by the following publications. This list is generated based on data provided by Crossref.
Blank, Michael
and
Keller, Gerhard
1998.
Random perturbations of chaotic dynamical systems: stability of the spectrum.
Nonlinearity,
Vol. 11,
Issue. 5,
p.
1351.
Abarenkova, N.
Anglès d'Auriac, J.-Ch.
Boukraa, S.
Hassani, S.
and
Maillard, J.-M.
1999.
Rational dynamical zeta functions for birational transformations.
Physica A: Statistical Mechanics and its Applications,
Vol. 264,
Issue. 1-2,
p.
264.
Abarenkova, N
Anglès d'Auriac, J.-Ch
Boukraa, S
Hassani, S
and
Maillard, J.-M
1999.
Topological entropy and Arnold complexity for two-dimensional mappings.
Physics Letters A,
Vol. 262,
Issue. 1,
p.
44.
Simons, B.D.
1999.
Irreversible classical dynamics and quantum chaos.
Physica A: Statistical Mechanics and its Applications,
Vol. 263,
Issue. 1-4,
p.
148.
Anglès d'Auriac, J. -Ch.
Boukraa, S.
and
Maillard, J. -M.
1999.
Functional relations in lattice statistical mechanics, enumerative combinatorics, and discrete dynamical systems.
Annals of Combinatorics,
Vol. 3,
Issue. 2-4,
p.
131.
Abarenkova, N.
Anglès d’Auriac, J.-Ch.
Boukraa, S.
and
Maillard, J.-M.
2000.
Real topological entropy versus metric entropy for birational measure-preserving transformations.
Physica D: Nonlinear Phenomena,
Vol. 144,
Issue. 3-4,
p.
387.
Abarenkova, N.
Anglès d'Auriac, J.-Ch.
Boukraa, S.
Hassani, S.
and
Maillard, J.-M.
2000.
Real Arnold complexity versus real topological entropy for a one-parameter-dependent two-dimensional birational transformation.
Physica A: Statistical Mechanics and its Applications,
Vol. 281,
Issue. 1-4,
p.
151.
Abarenkova, N
d'Auriac, J-Ch Anglès
Boukraa, S
Hassani, S
and
Maillard, J-M
2000.
Real Arnold complexity versus real topological entropy for birational transformations.
Journal of Physics A: Mathematical and General,
Vol. 33,
Issue. 8,
p.
1465.
HURT, NORMAN E.
2001.
THE PRIME GEODESIC THEOREM AND QUANTUM MECHANICS ON FINITE VOLUME GRAPHS: A REVIEW.
Reviews in Mathematical Physics,
Vol. 13,
Issue. 12,
p.
1459.
Naud, Frédéric
2001.
Analytic continuation of a dynamical zeta function under a Diophantine condition.
Nonlinearity,
Vol. 14,
Issue. 5,
p.
995.
Baladi, Viviane
2001.
European Congress of Mathematics.
p.
203.
Pollicott, Mark
2002.
Vol. 1,
Issue. ,
p.
409.
Yuri, Michiko
2002.
On the speed of convergence to equilibrium states for multi-dimensional maps with indifferent periodic points.
Nonlinearity,
Vol. 15,
Issue. 2,
p.
429.
Baillif, Mathieu
2004.
Kneading operators, sharp determinants, and weighted Lefschetz zeta functions in higher dimensions.
Duke Mathematical Journal,
Vol. 124,
Issue. 1,
Sharp, Richard
2004.
On Some Aspects of the Theory of Anosov Systems.
p.
73.
Järvenpää, E
2005.
Dynamics of Coupled Map Lattices and of Related Spatially Extended Systems.
Vol. 671,
Issue. ,
p.
95.
Pollicott, Mark
2006.
Frontiers in Number Theory, Physics, and Geometry I.
p.
379.
Anantharaman, Nalini
and
Zelditch, Steve
2012.
Intertwining the geodesic flow and the Schrödinger group on hyperbolic surfaces.
Mathematische Annalen,
Vol. 353,
Issue. 4,
p.
1103.
Ferreira Alves, João
and
Málek, Michal
2013.
Zeta functions and topological entropy of periodic nonautonomous dynamical systems.
Discrete & Continuous Dynamical Systems - A,
Vol. 33,
Issue. 2,
p.
465.
Matsumoto, Kengo
2016.
On flow equivalence of one-sided topological Markov shifts.
Proceedings of the American Mathematical Society,
Vol. 144,
Issue. 7,
p.
2923.