Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-26T00:36:20.181Z Has data issue: false hasContentIssue false

On the total disconnectedness of the quotient Aubry set

Published online by Cambridge University Press:  01 February 2008

ALFONSO SORRENTINO*
Affiliation:
Department of Mathematics, Princeton University, Washington Road, Princeton, NJ 08544, USA (email: [email protected])

Abstract

In this paper we show that the quotient Aubry set, associated to a sufficiently smooth mechanical or symmetrical Lagrangian, is totally disconnected (i.e. every connected component consists of a single point). This result is optimal, in the sense of the regularity of the Lagrangian, as Mather’s counterexamples (J. N. Mather. Examples of Aubry sets. Ergod. Th. & Dynam. Sys.24(5) (2004), 1667–1723) show. Moreover, we discuss the relation between this problem and a Morse–Sard-type property for (the difference of) critical subsolutions of Hamilton–Jacobi equations.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Abraham, R. and Robbin, J.. Transversal Mappings and Flows. W. A. Benjamin, New York, 1967, With an appendix by Al Kelley.Google Scholar
[2]Bangert, V.. Mather sets for twist maps and geodesics on tori. Dynamics Reported, Vol. 1 (Dynam. Report. Ser. Dynam. Systems Appl., 1). Wiley, Chichester, 1988, pp. 156.Google Scholar
[3]Bates, S. M.. Toward a precise smoothness hypothesis in Sard’s theorem. Proc. Amer. Math. Soc. 117(1) (1993), 279283.Google Scholar
[4]Bernard, P.. Existence of C 1,1 critical sub-solutions of the Hamilton–Jacobi equation on compact manifolds. Ann. Sci. École Norm. Sup. (4), to appear.Google Scholar
[5]Burago, D., Ivanov, S. and Kleiner, B.. On the structure of the stable norm of periodic metrics. Math. Res. Lett. 4(6) (1997), 791808.CrossRefGoogle Scholar
[6]Contreras, G., Delgado, J. and Iturriaga, R.. Lagrangian flows: the dynamics of globally minimizing orbits. II. Bol. Soc. Brasil. Mat. (N.S.) 28(2) (1997), 155196.Google Scholar
[7]Contreras, G. and Iturriaga, R.. Global minimizers of autonomous Lagrangians. 22 Colóquio Brasileiro de Matemática (22nd Brazilian Mathematics Colloquium). Instituto de Matemática Pura e Aplicada (IMPA), Rio de Janeiro, 1999.Google Scholar
[8]Fathi, A.. Sard, Whitney, Assouad and Mather. Talk at Recent and Future developments in Hamiltonian Systems (Institut Henri Poincaré, Paris, France, May 2005).Google Scholar
[9]Fathi, A.. Weak KAM Theorem and Lagrangian Dynamics. Cambridge University Press, Cambridge, to appear.Google Scholar
[10]Fathi, A. and Siconolfi, A.. Existence of C1 critical subsolutions of the Hamilton–Jacobi equation. Invent. Math. 155(2) (2004), 363388.CrossRefGoogle Scholar
[11]Forni, G. and Mather, J. N.. Action minimizing orbits in Hamiltonian systems. Transition to Chaos in Classical and Quantum Mechanics (Montecatini Terme, 1991) (Lecture Notes in Mathematics, 1589). Springer, Berlin, 1994, pp. 92186.Google Scholar
[12]Hajlasz, P.. Whitney’s example by way of Assouad’s embedding. Proc. Amer. Math. Soc. 131(11) (2003), 34633467 (electronic).CrossRefGoogle Scholar
[13]Mañé, R.. Lagrangian flows: the dynamics of globally minimizing orbits. Bol. Soc. Brasil. Mat. (N.S.) 28(2) (1997), 141153.Google Scholar
[14]Mather, J. N.. Action minimizing invariant measures for positive definite Lagrangian systems. Math. Z. 207(2) (1991), 169207.Google Scholar
[15]Mather, J. N.. Variational construction of connecting orbits. Ann. Inst. Fourier (Grenoble) 43(5) (1993), 13491386.CrossRefGoogle Scholar
[16]Mather, J. N.. Total disconnectedness of the quotient Aubry set in low dimensions. Comm. Pure Appl. Math. 56(8) (2003), 11781183. Dedicated to the memory of Jürgen K. Moser.Google Scholar
[17]Mather, J. N.. Examples of Aubry sets. Ergod. Th. & Dynam. Sys. 24(5) (2004), 16671723.Google Scholar
[18]Whitney, H.. Analytic extensions of differentiable functions defined in closed sets. Trans. Amer. Math. Soc. 36(1) (1934), 6389.CrossRefGoogle Scholar