Article contents
On the specification property and synchronization of unique q-expansions
Published online by Cambridge University Press: 28 September 2020
Abstract
Given a positive integer M and
$q \in (1, M+1]$
we consider expansions in base q for real numbers
$x \in [0, {M}/{q-1}]$
over the alphabet
$\{0, \ldots , M\}$
. In particular, we study some dynamical properties of the natural occurring subshift
$(\boldsymbol{{V}}_q, \sigma )$ related to unique expansions in such base q. We characterize the set of
$q \in \mathcal {V} \subset (1,M+1]$
such that
$(\boldsymbol{{V}}_q, \sigma )$
has the specification property and the set of
$q \in \mathcal {V}$
such that
$(\boldsymbol{{V}}_q, \sigma )$
is a synchronized subshift. Such properties are studied by analysing the combinatorial and dynamical properties of the quasi-greedy expansion of q. We also calculate the size of such classes as subsets of
$\mathcal {V}$
giving similar results to those shown by Blanchard [
10
] and Schmeling in [
36
] in the context of
$\beta $
-transformations.
Keywords
MSC classification
- Type
- Original Article
- Information
- Copyright
- © The Author(s), 2020. Published by Cambridge University Press
References
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20210806000159437-0563:S0143385720000553:S0143385720000553_inline12.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20210806000159437-0563:S0143385720000553:S0143385720000553_inline11.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20210806000159437-0563:S0143385720000553:S0143385720000553_inline13.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20210806000159437-0563:S0143385720000553:S0143385720000553_inline14.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20210806000159437-0563:S0143385720000553:S0143385720000553_inline15.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20210806000159437-0563:S0143385720000553:S0143385720000553_inline16.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20210806000159437-0563:S0143385720000553:S0143385720000553_inline17.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20210806000159437-0563:S0143385720000553:S0143385720000553_inline18.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20210806000159437-0563:S0143385720000553:S0143385720000553_inline19.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20210806000159437-0563:S0143385720000553:S0143385720000553_inline20.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20210806000159437-0563:S0143385720000553:S0143385720000553_inline21.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20210806000159437-0563:S0143385720000553:S0143385720000553_inline22.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20210806000159437-0563:S0143385720000553:S0143385720000553_inline23.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20210806000159437-0563:S0143385720000553:S0143385720000553_inline24.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20210806000159437-0563:S0143385720000553:S0143385720000553_inline25.png?pub-status=live)
- 1
- Cited by