Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-24T16:37:26.997Z Has data issue: false hasContentIssue false

On the full periodicity kernel for one-dimensional maps

Published online by Cambridge University Press:  01 February 1999

M. CARME LESEDUARTE
Affiliation:
Departament de Matemàtica Aplicada II, ETSEIT, Universitat Politècnica de Catalunya, 08222 Terrassa, Barcelona, Spain (e-mail: [email protected])
JAUME LLIBRE
Affiliation:
Departament de Matemàtiques, Facultat de Ciències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain (e-mail: [email protected])

Abstract

Let $\bpropto$ be the topological space obtained by identifying the points 1 and 2 of the segment $[0,3]$ to a point. Let $\binfty$ be the topological space obtained by identifying the points 0, 1 and 2 of the segment $[0,2]$ to a point. An $\bpropto$ (respectively $\binfty$) map is a continuous self-map of $\bpropto$ (respectively $\binfty$) having the branching point fixed. Set $E\in\{\bpropto,\binfty\}$. Let $f$ be an $E$ map. We denote by $\Per(f)$ the set of periods of all periodic points of $f$. The set $K \subset{\mathbb N}$ is the full periodicity kernel of $E$ if it satisfies the following two conditions: (1) if $f$ is an $E$ map and $K\subset \Per(f)$, then $\Per(f)={\mathbb N}$; (2) for each $k\in K$ there exists an $E$ map $f$ such that $\Per(f)={\mathbb N}\setminus\{ k\}$. In this paper we compute the full periodicity kernel of $\bpropto$ and $\binfty$.

Type
Research Article
Copyright
1999 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)