Crossref Citations
This article has been cited by the following publications. This list is generated based on data provided by
Crossref.
Feng, De‐Jun
and
Hu, Huyi
2009.
Dimension theory of iterated function systems.
Communications on Pure and Applied Mathematics,
Vol. 62,
Issue. 11,
p.
1435.
Buraczewski, Dariusz
Damek, Ewa
Guivarc’h, Yves
Hulanicki, Andrzej
and
Urban, Roman
2009.
Tail-homogeneity of stationary measures for some multidimensional stochastic recursions.
Probability Theory and Related Fields,
Vol. 145,
Issue. 3-4,
Buraczewski, Dariusz
Damek, Ewa
and
Guivarc’h, Yves
2010.
Convergence to stable laws for a class of multidimensional stochastic recursions.
Probability Theory and Related Fields,
Vol. 148,
Issue. 3-4,
p.
333.
Mirek, Mariusz
2011.
Heavy tail phenomenon and convergence to stable laws for iterated Lipschitz maps.
Probability Theory and Related Fields,
Vol. 151,
Issue. 3-4,
p.
705.
Bartkiewicz, Katarzyna
Jakubowski, Adam
Mikosch, Thomas
and
Wintenberger, Olivier
2011.
Stable limits for sums of dependent infinite variance random variables.
Probability Theory and Related Fields,
Vol. 150,
Issue. 3-4,
p.
337.
Guibourg, Denis
and
Hervé, Loïc
2011.
A Renewal Theorem for Strongly Ergodic Markov Chains in Dimension d ≥ 3 and Centered Case.
Potential Analysis,
Vol. 34,
Issue. 4,
p.
385.
Buraczewski, Dariusz
Damek, Ewa
and
Mirek, Mariusz
2012.
Asymptotics of stationary solutions of multivariate stochastic recursions with heavy tailed inputs and related limit theorems.
Stochastic Processes and their Applications,
Vol. 122,
Issue. 1,
p.
42.
Dolgopyat, D.
and
Goldsheid, I.
2012.
Quenched Limit Theorems for Nearest Neighbour Random Walks in 1D Random Environment.
Communications in Mathematical Physics,
Vol. 315,
Issue. 1,
p.
241.
SANTOS, SARA I.
and
WALKDEN, CHARLES
2013.
DISTRIBUTIONAL AND LOCAL LIMIT LAWS FOR A CLASS OF ITERATED MAPS THAT CONTRACT ON AVERAGE.
Stochastics and Dynamics,
Vol. 13,
Issue. 02,
p.
1250019.
Gao, Zhiqiang
Guivarcʼh, Yves
and
Le Page, Émile
2013.
Relations de récurrence à coefficients aléatoires et lois stables.
Comptes Rendus. Mathématique,
Vol. 351,
Issue. 1-2,
p.
69.
Guivarcʼh, Yves
and
Le Page, Émile
2013.
Asymptotique des valeurs extrêmes pour les marches aléatoires affines.
Comptes Rendus. Mathématique,
Vol. 351,
Issue. 17-18,
p.
703.
Dolgopyat, D.
and
Goldsheid, I.
2013.
Local Limit Theorems for random walks in a 1D random environment.
Archiv der Mathematik,
Vol. 101,
Issue. 2,
p.
191.
Walkden, Charles
2013.
Transfer operators for contractive Markov systems and stochastic stability of the invariant measure.
Dynamical Systems,
Vol. 28,
Issue. 1,
p.
34.
Damek, Ewa
Mentemeier, Sebastian
Mirek, Mariusz
and
Zienkiewicz, Jacek
2013.
Convergence to Stable Laws for Multidimensional Stochastic Recursions: The Case of Regular Matrices.
Potential Analysis,
Vol. 38,
Issue. 3,
p.
683.
Nagaev, Sergey Victorovich
2015.
Спектральный метод и эргодические теоремы для общих цепей Маркова.
Известия Российской академии наук. Серия математическая,
Vol. 79,
Issue. 2,
p.
101.
Nagaev, S V
2015.
The spectral method and ergodic theorems for general Markov chains.
Izvestiya: Mathematics,
Vol. 79,
Issue. 2,
p.
311.
Gao, Zhiqiang
Guivarc’h, Yves
and
Le Page, Émile
2015.
Stable laws and spectral gap properties for affine random walks.
Annales de l'Institut Henri Poincaré, Probabilités et Statistiques,
Vol. 51,
Issue. 1,
Nagaev, S. V.
2016.
The Spectral Method and the Central Limit Theorem for General Markov Chains*.
Journal of Mathematical Sciences,
Vol. 218,
Issue. 2,
p.
216.
Nagaev, Sergey Victorovich
2017.
Спектральный метод и центральная предельная теорема для общих цепей Маркова.
Известия Российской академии наук. Серия математическая,
Vol. 81,
Issue. 6,
p.
114.
Nagaev, S. V.
2017.
The spectral method and the central limit theorem for general Markov chains.
Izvestiya: Mathematics,
Vol. 81,
Issue. 6,
p.
1168.