Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-05T02:59:05.586Z Has data issue: false hasContentIssue false

On numbers having finite beta-expansions

Published online by Cambridge University Press:  03 February 2009

TOUFIK ZAÏMI*
Affiliation:
Département de Mathématiques, Centre Université Larbi Ben M’hidi, Oum El Bouaghi 04000, Algérie (email: [email protected])

Abstract

Let β be a real number greater than one, and let ℤβ be the set of real numbers which have a zero fractional part when expanded in base β. We prove that β is a Pisot number when the set ℕβ−ℕβ−ℕβ is discrete, where ℕβ=ℤβ∩[0,[. We also give partial answers to some related open problems, and in particular, we show that β is a Pisot number when a sum ℤβ+⋯+ℤβ is a Meyer set.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Akyama, S.. Self affine tiling and Pisot numeration systems. Number Theory and its Applications. Eds. K. Györy and S. Kanemitsu. Kluwer, Dordrecht, 1999, pp. 717.Google Scholar
[2]Akyama, S., Bassino, F. and Frougny, Ch.. Arithmetic Meyer sets and finite automata. Inform. Comput. 201 (2005), 199215.CrossRefGoogle Scholar
[3]Akyama, S., Rao, H. and Steiner, W.. A certain finiteness property of Pisot number systems. J. Number Theory 107 (2004), 135160.Google Scholar
[4]Barache, D., Champagne, B. and Gazeau, J. P.. Pisot-Cyclotomic Quasilattices and their Symmetry Semi-groups. Quasicrystals and Discrete Geometry (Fields Institute Monograph Series, 10). Ed. J. Patera. American Mathematical Society, Providence, RI, 1998.Google Scholar
[5]Barat, G., Frougny, Ch. and Pethö, A.. A note on linear recurrent Mahler numbers. Integers 5 (2005), A1.Google Scholar
[6]Blanchard, F.. β-expansions and symbolic dynamics. Theoret. Comp. Sci. 65 (1989), 131141.CrossRefGoogle Scholar
[7]Bugeaud, Y.. On a property of Pisot numbers and related questions. Acta Math. Hungar. 73 (1996), 3339.CrossRefGoogle Scholar
[8]Burdǐk, Č., Frougny, Ch., Gazeau, J. P. and Krejcar, R.. Beta-integers as natural counting systems for quasicrystals. J. Phys. A: Math. Gen. 31 (1998), 64496472.CrossRefGoogle Scholar
[9]Erdös, P. and Komornik, V.. Developments in non integer bases. Acta Math. Hungar. 79 (1998), 5783.CrossRefGoogle Scholar
[10]Frougny, Ch.. Confluent linear numeration systems. Theoret. Comput. Sci. 106 (1992), 183219.CrossRefGoogle Scholar
[11]Frougny, Ch.. Representations of numbers and finite automata. Math. Systems Theory 25 (1992), 3760.Google Scholar
[12]Frougny, Ch. and Solomyak, B.. Finite beta-expansions. Ergod. Th. & Dynam. Sys. 12 (1992), 713723.CrossRefGoogle Scholar
[13]Hollander, M.. Linear numeration systems, finite beta-expansions, and discrete spectrum of substitution dynamical systems. PhD Thesis, University of Washington, 1996.Google Scholar
[14]Lagarias, J. C.. Meyer’s concept of quasicrystal and quasiregular sets. Commun. Math. Phys. 179 (1996), 365376.CrossRefGoogle Scholar
[15]Lothaire, M.. Algebraic Combinatorics on Words (Encyclopedia of Mathematics and its Applications, 90). Cambridge University Press, Cambridge, 2002.CrossRefGoogle Scholar
[16]Parry, W.. On the β-expansions of real numbers. Acta Math. Acad. Sci. Hungar. 11 (1960), 401416.CrossRefGoogle Scholar
[17]Rauzy, G.. Nombres Algébriques et substitutions. Bull. Soc. France 110 (1982), 147178.CrossRefGoogle Scholar
[18]Rényi, A.. Representations for real numbers and their ergodic properties. Acta Math. Hungar. 8 (1957), 477493.Google Scholar
[19]Zaïmi, T.. On an approximation property of Pisot numbers. Acta Math. Hungar. 96(4) (2002), 309325.CrossRefGoogle Scholar
[20]Zaïmi, T.. On an approximation property of Pisot numbers II. J. Théor. Nombres Bordeaux 16 (2004), 239249.Google Scholar
[21]Zaïmi, T.. Approximation by polynomials with bounded coefficients. J. Number Theory 127 (2007), 103117.CrossRefGoogle Scholar