Published online by Cambridge University Press: 12 February 2007
We study the ergodic properties of the additive Euclidean algorithm $f$ defined in $\mathbb{R}^2_+$. A natural extension of $f$ is obtained using the action of ${\it SL}(2, \mathbb{Z})$ on a subset of ${\it SL}(2, \mathbb{R})$. We prove that, while $f$ is an ergodic transformation with an infinite invariant measure equivalent to the Lebesgue measure, the invariant measure is not unique up to scalar multiples, and in fact there is a continuous family of such measures.