Article contents
Norm convergence of multiple ergodic averages for commuting transformations
Published online by Cambridge University Press: 01 April 2008
Abstract
Let T1,…,Tl:X→X be commuting measure-preserving transformations on a probability space . We show that the multiple ergodic averages are convergent in as for all ; this was previously established for l=2 by Conze and Lesigne [J. P. Conze and E. Lesigne. Théorèmes ergodique por les mesures diagonales. Bull. Soc. Math. France112 (1984), 143–175] and for general l assuming some additional ergodicity hypotheses on the maps Ti and TiTj−1 by Frantzikinakis and Kra [N. Frantzikinakis and B. Kra. Convergence of multiple ergodic averages for some commuting transformations. Ergod. Th. & Dynam. Sys.25 (2005), 799–809] (with the l=3 case of this result established earlier by Zhang [Q. Zhang. On the convergence of the averages . Mh. Math.122 (1996), 275–300]). Our approach is combinatorial and finitary in nature, inspired by recent developments regarding the hypergraph regularity and removal lemmas, although we will not need the full strength of those lemmas. In particular, the l=2 case of our arguments is a finitary analogue of those by Conze and Lesigne.
- Type
- Research Article
- Information
- Ergodic Theory and Dynamical Systems , Volume 28 , Issue 2: William Parry Memorial Volume , April 2008 , pp. 657 - 688
- Copyright
- Copyright © Cambridge University Press 2008
References
- 108
- Cited by