Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-26T01:08:33.905Z Has data issue: false hasContentIssue false

A new proof of the Brouwer plane translation theorem

Published online by Cambridge University Press:  19 September 2008

John Franks
Affiliation:
Department of Mathematics, Northwestern University, Evanston, IL 60201, USA

Abstract

Let f be an orientation-preserving homeomorphism of ℝ2 which is fixed point free. The Brouwer ‘plane translation theorem’ asserts that every x0 ∈ ℝ2 is contained in a domain of translation for f i.e. an open connected subset of ℝ2 whose boundary is Lf(L) where L is the image of a proper embedding of ℝ in ℝ2, such that L separates f(L) and f−1(L). In addition to a short new proof of this result we show that there exists a smooth Morse function g: ℝ2 → ℝ such that g(f(x)) < g(x) for all x and the level set of g containing x0 is connected and non-compact (and hence the image of a properly embedded line).

Type
Research Article
Copyright
Copyright © Cambridge University Press 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[A]Andrea, S.. Abh. Math. Sem. Univ. Hamburg 30 (1967), 61–61.CrossRefGoogle Scholar
[BF]Barge, Marcy & Franks, John. Recurrent Sets for Planar Homeomorphisms. Preprint.Google Scholar
[B]Brouwer, L. E. J.. Beweis des ebenen Translationssatzes. Math. Ann. 72 (1912), 3754.CrossRefGoogle Scholar
[Br]Brown, M.. A New Proof of Brouwer's Lemma on Translation Arcs. Houston J. Math. 10 (1984), 3541.Google Scholar
[Fa]Fathi, A.. An orbit closing proof of Brouwer's lemma on translation arcs. L' enseignement Math. 33 (1987), 315322.Google Scholar
[G]Guillou, Lucien. Le théorème de translation plane de Brouwer: une démonstration simplifiée menant à une nouvelle preuve du théorème de Poincaré-Birkhoff. Preprint.Google Scholar
[H]Hurley, M.. Chain Recurrence and Attraction in Noncompact Spaces. Ergod. Th. & Dynam. Sys. 11 (1991), 709729.CrossRefGoogle Scholar
[OU]Oxtoby, J. & Ulam, S.. Measure preserving homeomorphisms and metrical transitivity. Ann. Math. 42 (1941), 874920.CrossRefGoogle Scholar
[S]Slaminka, Edward E.. A Brouwer Translation Theorem for Free Homeomorphisms. Trans. Amer. Math. Soc. 306 (1988), 277291.CrossRefGoogle Scholar