Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-13T08:30:10.090Z Has data issue: false hasContentIssue false

Minimality and ergodicity of a generic analytic foliation of ℂ2

Published online by Cambridge University Press:  01 October 2008

T. GOLENISHCHEVA-KUTUZOVA
Affiliation:
Department of Differential Equations, Faculty of Mechanics and Mathematics, Moscow State University, Vorob’evy Gory, 119991 GSP-1, Moscow, Russia
V. KLEPTSYN
Affiliation:
Institut de Recherche Mathématique de Rennes, Campus Scientifique de Beaulieu, 263 avenue Général Leclerc, 35042 Rennes, France Université de Genève, 2-4 rue du Lièvre, 1211 CP 64, Genève 4, Suisse Independent University of Moscow, Bol’shoj Vlas’evskij per., dom 11, 119002 Moscow, Russia

Abstract

It is well known that a generic polynomial foliation of ℂ2 is minimal and ergodic. In this paper we prove an analogous result for analytic foliations.

Type
Research Article
Copyright
Copyright © 2008 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Chaperon, M.. Generic complex flows. Complex Geometry II: Contemporary Aspects of Mathematics and Physics. Hermann, Paris, 2004, pp. 7179.Google Scholar
[2]Fedorov, R. M.. Lower bounds for the number of orbital topological types of planar polynomial vector fields modulo limit cycles. Mosc. Math. J. 1(4) (2001), 539550. Dedicated to the memory of I. G. Petrovskii on the occasion of his 100th anniversary.CrossRefGoogle Scholar
[3]Firsova, T. S.. Topology of analytic foliations in ℂ2. The Kupka-Smale property. Tr. Mat. Inst. Steklova 254 (2006), 162180; Proc. Steklov Inst. Math. 254 (2006), 169–179.Google Scholar
[4]Golenishcheva-Kutuzova, T. I.. A generic analytic foliation in ℂ2 has infinitely many cylindrical leaves. Tr. Mat. Inst. Steklova 254 (2006), 192195. Proc. Steklov Inst. Math. 254 (2006), 180–183.Google Scholar
[5]Hutchinson, J.. Fractals and self-similarity. Indiana Univ. Math. J. 30(5) (1981), 713747.CrossRefGoogle Scholar
[6]Ilyashenko, Yu.. Centennial history of Hilbert 16th problem. Bull. Amer. Math. Soc. 39(3) (2002), 301354.CrossRefGoogle Scholar
[7]Ilyashenko, Yu. S.. Foliations by analytic curves. Mat. Sb. 88(130) (1972), 558577.Google Scholar
[8]Ilyashenko, Yu.. The density of an individual solution and the ergodicity of the family of solutions of the equation /=P(ξ,η)/Q(ξ,η). Mat. Zametki 4 (1968), 741750 (Engl. transl. Math. Notes 4 (6) (1968), 934–938).Google Scholar
[9]Ilyashenko, Yu.. Topology of phase portraits of analytic differential equations on a complex projective plane. Trudy Sem. Petrovsk. 4 (1978), 83136 (Engl. transl. Selecta Math. Sov. 5 (1986), 141–199).Google Scholar
[10]Itenberg, I. and Shustin, E.. Singular points and limit cycles of planar polynomial vector fields. Duke Math. J. 102(1) (2000), 137.CrossRefGoogle Scholar
[11]Khudai-Verenov, M. G.. A property of the solutions of a differential equation. Mat. Sb. 56 (1962), 301308 (in Russian).Google Scholar
[12]Loray, F. and Rebelo, J.. Minimal, rigid foliations by curves on ℂP n. J. Eur. Math. Soc. 5 (2003), 147201.CrossRefGoogle Scholar
[13]Nakai, I.. Separatrices for nonsolvable dynamics on ℂ,0. Ann. Inst. Fourier (Grenoble) 44(2) (1994), 569599.CrossRefGoogle Scholar
[14]Navas, A.. Sur les groupes de difféomorphismes du cercle. Enseign. Math. 50 (2004), 2968.Google Scholar
[15]Shcherbakov, A. A.. Dynamics of local groups of conformal mappings and generic properties of differential equations on ℂ2. Tr. Mat. Inst. Steklova 254 (2006); Proc. Steklov Inst. Math. 254 (2006), 103–120.Google Scholar
[16]Shub, M. and Sullivan, D.. Expanding endomorphisms of the circle revisited. Ergod. Th. & Dynam. Sys. 5(2) (1985), 285289.CrossRefGoogle Scholar
[17]Sullivan, D.. Conformal Dynamical Systems (Lecture Notes in Mathematics, 1007). Springer, Berlin, 1983, pp. 725752.Google Scholar
[18]Viro, O.. Gluing of plane real algebraic curves and constructions of curves of degrees 6 and 7. Topology (Leningrad, 1982) (Lecture Notes in Mathematics, 1060). Springer, Berlin, 1984, pp. 187200.Google Scholar