Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-28T06:30:34.798Z Has data issue: false hasContentIssue false

The metric entropy of random dynamical systems in a Banach space: Ruelle inequality

Published online by Cambridge University Press:  15 November 2012

ZHIMING LI
Affiliation:
School of Mathematical Sciences, Peking University, Beijing 100871, People’s Republic of China (email: [email protected])
LIN SHU
Affiliation:
LMAM, School of Mathematical Sciences, Peking University, Beijing 100871, People’s Republic of China (email: [email protected])

Abstract

Consider a random cocycle Φ on a separable infinite-dimensional Banach space preserving a probability measure, which is supported on a random compact set. We show that if Φ satisfies some mild integrability conditions on the differentials, then Ruelle’s inequality relating entropy and positive Lyapunov exponents holds.

Type
Research Article
Copyright
©2012 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Arnold, L. and Imkeller, P.. On the integrability condition in the multiplicative ergodic theorem for stochastic differential equations. Stoch. Stoch. Rep. 64(3–4) (1998), 195210.Google Scholar
[2]Bogenschütz, T.. Entropy, pressure, and a variational principle for random dynamical systems. Random Comput. Dyn. 1 (1992/93), 99116.Google Scholar
[3]Bogenschütz, T.. Equilibrium states for random dynamical systems. PhD Thesis, Institut für Dynamische Systeme, Universität Bremen, 1993.Google Scholar
[4]Brin, M. and Katok, A.. On local entropy. Geometric Dynamics (Rio de Janeiro, 1981) (Lecture Notes in Mathematics, 1007). Springer, Berlin, 1983, pp. 3038.Google Scholar
[5]Crauel, H. and Flandoli, F.. Attractors for random dynamical systems. Probab. Theory Related Fields 100(3) (1994), 365393.Google Scholar
[6]Crauel, H.. Random Probability Measures on Polish Spaces (Stochastics Monographs, 11). Taylor and Francis, London, 2002.Google Scholar
[7]Eckmann, J.-P. and Ruelle, D.. Ergodic theory of chaos and strange attractors. Rev. Modern Phys. 57(3) (1985), 617656.Google Scholar
[8]Froyland, G., Lloyd, S. and Quas, A.. Coherent structures and isolated spectrum for Perron–Frobenius cocycles. Ergod. Th. & Dynam. Sys. 30(3) (2010), 729756.CrossRefGoogle Scholar
[9]Froyland, G., Lloyd, S. and Santitissadeekorn, N.. Coherent sets for nonautonomous dynamical systems. Phys. D 239(16) (2010), 15271541.CrossRefGoogle Scholar
[10]Katok, A., Strelcyn, J.-M., Ledrappier, F. and Przytycki, F.. Invariant Manifolds, Entropy and Billiards; Smooth Maps with Singularities (Lecture Notes in Mathematics, 1222). Springer, Berlin, 1986.CrossRefGoogle Scholar
[11]Ledrappier, F.. Some properties of absolutely continuous invariant measures on an interval. Ergod. Th. & Dynam. Sys. 1(1) (1981), 7793.Google Scholar
[12]Ledrappier, F. and Young, L.-S.. The metric entropy of diffeomorphisms. I. Characterization of measures satisfying Pesin’s entropy formula. Ann. of Math. (2) 122(3) (1985), 509539.CrossRefGoogle Scholar
[13]Ledrappier, F. and Young, L.-S.. The metric entropy of diffeomorphisms. II. Relations between entropy, exponents and dimension. Ann. of Math. (2) 122(3) (1985), 540574.CrossRefGoogle Scholar
[14]Li, Z.-M. and Shu, L.. The metric entropy of random dynamical systems in a Hilbert space: characterization of measures satisfying Pesin’s entropy formula. Preprint.Google Scholar
[15]Lian, Z. and Lu, K.-N.. Lyapunov exponents and invariant manifolds for random dyanmical systems in a Banach space. Mem. Amer. Math. Soc. 206 (2010), no. 967.Google Scholar
[16]Lian, Z. and Young, L.-S.. Lyapunov exponents, periodic orbits and horseshoes for mappings of Hilbert spaces. Ann. Henri Poincaré 12 (2011), 10811108.CrossRefGoogle Scholar
[17]Liu, P.-D. and Qian, M.. Smooth Ergodic Theory of Random Dynamical Systems (Lecture Notes in Mathematics, 1606). Springer, Berlin, 1995.Google Scholar
[18]Liu, P.-D.. Ruelle inequality relating entropy, folding entropy and negative Lyapunov exponents. Comm. Math. Phys. 240(3) (2003), 531538.Google Scholar
[19]Mané, R.. A proof of Pesin’s formula. Ergod. Th. & Dynam. Sys. 1(1) (1981), 95102.Google Scholar
[20]Mané, R.. Lyapounov exponents and stable manifolds for compact transformations. Geometric Dynamics (Rio de Janeiro, 1981) (Lecture Notes in Mathematics, 1007). Springer, Berlin, 1983, pp. 522577.CrossRefGoogle Scholar
[21]Oseledeč, V.-I.. A multiplicative ergodic theorem: Lyapunov characteristic numbers for dynamical systems. Trans. Moscow Math. Soc. 19 (1968), 197221.Google Scholar
[22]Pesin, J.-B.. Characteristic Lyapunov exponents, and smooth ergodic theory. Uspehi Mat. Nauk 32(4 (196)) (1977), 55112, 287 (in Russian).Google Scholar
[23]Phelps, R.-R.. Lectures on Choquet’s Theorem. Van Nostrand, Princeton, NJ, 1966.Google Scholar
[24]Qian, M. and Zhang, Z.-S.. Ergodic theory for axiom A endomorphisms. Ergod. Th. & Dynam. Sys. 15 (1995), 161174.CrossRefGoogle Scholar
[25]Qian, M., Xie, J.-S. and Zhu, S.. Smooth Ergodic Theory for Endomorphisms (Lecture Notes in Mathematics, 1978). Springer, Berlin, 2009.CrossRefGoogle Scholar
[26]Ruelle, D.. An inequality for the entropy of differentiable maps. Bol. Soc. Brasil. Mat. 9(1) (1978), 8387.Google Scholar
[27]Ruelle, D.. Characteristic exponents and invariant manifolds in Hilbert space. Ann. of Math. (2) 115(2) (1982), 243290.Google Scholar
[28]Ruelle, D.. Characteristic exponents for a viscous fluid subjected to time dependent forces. Comm. Math. Phys. 93(3) (1984), 285300.Google Scholar
[29]Schaumlöffel, K. -U.. Zufällige Evolutionsoperatoren für stochastische partielle Differentialgleichungen. Dissertation, Universität Bremen, 1990.Google Scholar
[30]Schaumlöffel, K.-U. and Flandoli, F.. A multiplicative ergodic theorem with applications to a first order stochastic hyperbolic equation in a bounded domain. Stoch. Stoch. Rep. 34(3–4) (1991), 241255.Google Scholar
[31]Shu, L.. The Hausdorff dimension of horseshoes under random perturbations. Stoch. Dyn. 9(1) (2009), 101120.Google Scholar
[32]Shu, L.. The metric entropy of endomorphisms. Commun. Math. Phys. 291 (2009), 491512.Google Scholar
[33]Thieullen, P.. Fibrés dynamiques asymptotiquement compacts. Exposants de Lyapounov. Entropie. Dimension [Asymptotically compact dynamic bundles. Lyapunov exponents. Entropy. Dimension]. Ann. Inst. H. Poincaré Anal. Non Linéaire 4(1) (1987), 4997 (in French).CrossRefGoogle Scholar
[34]Thieullen, P.. Entropy and the Hausdorff dimension for infinite-dimensional dynamical systems. J. Dynam. Differential Equations 4(1) (1992), 127159.Google Scholar
[35]Thieullen, P.. Fibres dynamiques. Entropie et dimension [Dynamical bundles. Entropy and dimension]. Ann. Inst. H. Poincaré Anal. Non Linéaire 9(2) (1992), 119146 (in French).Google Scholar
[36]Young, L.-S.. Chaotic phenomena in three settings: large, noisy and out of equilibrium. Nonlinearity 21(11) (2008), T245T252.Google Scholar