Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-13T11:49:35.528Z Has data issue: false hasContentIssue false

Meromorphic multifunctions in complex dynamics

Published online by Cambridge University Press:  19 September 2008

L. Baribeau
Affiliation:
Department of Pure Mathematics and Mathematical Statistics, 16 Mill Lane, Cambridge CB2 1 SB, UK
T. J. Ransford
Affiliation:
Department of Pure Mathematics and Mathematical Statistics, 16 Mill Lane, Cambridge CB2 1 SB, UK

Abstract

Let {RA} be an analytic family of rational maps and denote by j(λ) the Julia set of Rλ. We prove that the upper semicontinuous regularization j(λ) of j(λ) (which coincides with j(λ) for all λ in a dense open set) is a meromorphic multifunction, and give applications that illustrate the instability of Julia sets. In a similar vein, we also consider forward orbits of critical points and limit sets of Kleinian groups.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[A]Aupetit, B.. A Primer on Spectral Theory. Springer-Verlag: New York, 1991.CrossRefGoogle Scholar
[Ba1]Baker, I. N.. Repulsive fixpoints of entire functions. Math. Z. 104 (1968), 252256.CrossRefGoogle Scholar
[Ba2]Baker, I. N.. Wandering domains in the iteration of entire functions. Proc. London Math. Soc. (3) 49 (1984), 563576.CrossRefGoogle Scholar
[Be1]Beardon, A. F.. The Geometry of Discrete Groups. Springer-Verlag: New York, 1983.CrossRefGoogle Scholar
[Be2]Beardon, A. F.. Iteration of Rational Maps. Springer-Verlag: New York, 1991.CrossRefGoogle Scholar
[Bl]Blanchard, P.. Complex analytic dynamics on the Riemann sphere. Bull. Amer. Math. Soc. 11 (1984), 85141.CrossRefGoogle Scholar
[DD]Devaney, R. L. & Durkin, M. B.. The exploding exponential and other chaotic bursts in complex dynamics. Amer. Math. Monthly 98 (1991), 217233.CrossRefGoogle Scholar
[F]Fatou, P.. Sur l'itération des fonctions transcendantes entières. Acta Math. 47 (1926), 337370.CrossRefGoogle Scholar
[Hel]Helms, L. L.. Introduction to Potential Theory. Robert E. Krieger: New York, 1975.Google Scholar
[Her]Herman, M. R.. Exemples de fonctions rationnelles ayant une orbite dense sur la sphère de Riemann. Bull. Soc. Math. France 112 (1984), 93142.Google Scholar
[K]Kriete, H.. The stability of Julia sets. Math. Göttingensis 22 (1988), 116.Google Scholar
[MSS]Mañé, R., Sad, P. & Sullivan, D.. On the dynamics of rational maps. Ann. Éc. Norm. Sup. (4) 16 (1983), 193217.CrossRefGoogle Scholar
[Ma]Maskit, B.. Kleinian Groups. Grundlehren der mathematischen Wissenschaften 287. Springer-Verlag: Berlin, 1988.Google Scholar
[R1]Ransford, T. J.. Open mapping, inversion and implicit function theorems for analytic multivalued functions. Proc. London Math. Soc. (3) 49 (1984), 537562.CrossRefGoogle Scholar
[R2]Ransford, T. J.. Interpolation and extrapolation of analytic multivalued functions. Proc. London Math. Soc. (3) 50 (1985), 480504.CrossRefGoogle Scholar
[Sl]Slodkowski, Z.. An analytic set-valued selection and its applications to the corona theorem, to polynomial hulls and joint spectra. Trans. Amer. Math. Soc. 294 (1986), 367377.CrossRefGoogle Scholar
[Su]Sullivan, D.. Quasiconformal homeomorphisms and dynamics I. Ann. Math. 122 (1985), 401418.CrossRefGoogle Scholar