No CrossRef data available.
Published online by Cambridge University Press: 10 November 2016
For a strongly dissipative Hénon-like map at the first bifurcation parameter at which the uniform hyperbolicity is destroyed by the formation of tangencies inside the limit set, we effect a multifractal analysis, i.e. decompose the set of non-wandering points on the unstable manifold into level sets of an unstable Lyapunov exponent, and give a partial description of the Lyapunov spectrum which encodes this decomposition. We derive a formula for the Hausdorff dimension of the level sets in terms of the entropy and unstable Lyapunov exponent of invariant probability measures, and show the continuity of the Lyapunov spectrum. We also show that the set of points for which the unstable Lyapunov exponents do not exist carries the full Hausdorff dimension.