Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-28T10:14:54.988Z Has data issue: false hasContentIssue false

Lower semicontinuity of attractors for non-autonomous dynamical systems

Published online by Cambridge University Press:  03 February 2009

ALEXANDRE N. CARVALHO
Affiliation:
Departamento de Matemática, Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo-Campus de São Carlos, Caixa Postal 668, 13560-970 São Carlos SP, Brazil (email: [email protected])
JOSÉ A. LANGA
Affiliation:
Departamento de Ecuaciones Diferenciales y Análisis Numérico, Universidad de Sevilla, Apdo. de Correos 1036, 41080-Sevilla, Spain (email: [email protected])
JAMES C. ROBINSON
Affiliation:
Mathematics Institute, University of Warwick, Coventry CV4 7AL, UK (email: [email protected])

Abstract

This paper is concerned with the lower semicontinuity of attractors for semilinear non-autonomous differential equations in Banach spaces. We require the unperturbed attractor to be given as the union of unstable manifolds of time-dependent hyperbolic solutions, generalizing previous results valid only for gradient-like systems in which the hyperbolic solutions are equilibria. The tools employed are a study of the continuity of the local unstable manifolds of the hyperbolic solutions and results on the continuity of the exponential dichotomy of the linearization around each of these solutions.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Abreu, E. A. M. and Carvalho, A. N.. Lower semicontinuity of attractors for parabolic problems with Dirichlet boundary conditons in varying domains. Mat. Contemp. 27 (2004), 3751.Google Scholar
[2]Arrieta, J. M. and Carvalho, A. N.. Spectral convergence and nonlinear dynamics of reaction-diffusion equations under perturbations of the domain. J. Differential Equations 199 (2004), 143178.CrossRefGoogle Scholar
[3]Bates, P., Lu, K. and Zeng, C.. Existence and persistence of invariant manifolds for semiflows in Banach spaces. Mem. Amer. Math. Soc. 135(645) (1999).Google Scholar
[4]Berger, A. and Siegmund, S.. Uniformly attracting solutions of nonautonomous differential equations. Nonlinear Anal. 68(12) (2008), 37893811.CrossRefGoogle Scholar
[5]Bruschi, S. M., Carvalho, A. N., Cholewa, J. W. and Dłotko, T.. Uniform exponential dichotomy and continuity of attractors for singularly perturbed damped wave equations. J. Dynam. Differential Equations 18 (2006), 767814.CrossRefGoogle Scholar
[6]Caraballo, T., Langa, J. A. and Robinson, J. C.. Upper semicontinuity of attractors for small random perturbations of dynamical systems. Comm. Partial Differential Equations 23(9–10) (1998), 15571581.Google Scholar
[7]Caraballo, T. and Langa, J. A.. On the upper semicontinuity of cocycle attractors for non-autonomous and random dynamical systems. Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 10(4) (2003), 491513.Google Scholar
[8]Carbone, V. L., Carvalho, A. N. and Schiabel-Silva, K.. Continuity of attractors for parabolic problems with localized large diffusion. Nonlinear Anal. 68(3) (2008), 515535.CrossRefGoogle Scholar
[9]Carvalho, A. N. and Piskarev, S.. A general approximation scheme for attractors of abstract parabolic problems. Numer. Funct. Anal. Optim. 27 (2006), 785829.Google Scholar
[10]Carvalho, A. N. and Langa, J. A.. Non-autonomous perturbation of autonomous semilinear differential equations: continuity of local stable and unstable manifolds. J. Differential Equations 233(2) (2007), 622653.CrossRefGoogle Scholar
[11]Carvalho, A. N., Langa, J. A., Robinson, J. C. and Suárez, A.. Characterization of non-autonomous attractors of a perturbed gradient system. J. Differential Equations 236 (2007), 570603.Google Scholar
[12]Crauel, H., Debussche, A. and Flandoli, F.. Random attractors. J. Dynam. Differential Equations 9 (1995), 307341.CrossRefGoogle Scholar
[13]Cheban, D. N., Kloeden, P. E. and Schmalfuß, B.. The relationship between pullback, forward and global attractors of nonautonomous dynamical systems. Nonlinear Dyn. Syst. Theory 2(2) (2002), 125144.Google Scholar
[14]Chepyzhov, V. V. and Vishik, M. I.. Attractors for Equations of Mathematical Physics (AMS Colloquium Publications, 49). American Mathematical Society, Providence, RI, 2002.Google Scholar
[15]Efendiev, M., Zelik, S. and Miranville, A.. Exponential attractors and finite-dimensional reduction for non-autonomous dynamical systems. Proc. Roy. Soc. Edinburgh Sect. A 135(4) (2005), 703730.CrossRefGoogle Scholar
[16]Elliott, C. M. and Kostin, I. N.. Lower semicontinuity of a non-hyperbolic attractor for the viscous Cahn-Hilliard equation. Nonlinearity 9 (1996), 687702.Google Scholar
[17]Hale, J. K., Lin, X. B. and Raugel, G.. Upper semicontinuity of attractors for approximation of semigroups and partial differential equations. J. Math. Comput. 50 (1988), 89123.Google Scholar
[18]Hale, J. K.. Asymptotic Behavior of Dissipative Systems (Mathematical Surveys and Monographs, 25). American Mathematical Society, Providence, RI, 1988.Google Scholar
[19]Hale, J. K. and Raugel, G.. Lower semicontinuity of attractors of gradient systems and applications. Ann. Mat. Pura Appl. 154(4) (1989), 281326.CrossRefGoogle Scholar
[20]Henry, D.. Geometric Theory of Semilinear Parabolic Equations (Lecture Notes in Mathematics, 840). Springer, Berlin, 1981.CrossRefGoogle Scholar
[21]Kloeden, P. E. and Schmalfuß, B.. Asymptotic behaviour of non-autonomous difference inclusions. Systems Control Lett. 33 (1998), 275280.Google Scholar
[22]Kostin, I. N.. Lower semicontinuity of a non-hyperbolic attractor. J. London Math. Soc. 52 (1995), 568582.CrossRefGoogle Scholar
[23]Langa, J. A., Robinson, J. C., Suárez, A. and Vidal-López, A.. The structure of attractors in non-autonomous perturbations of gradient-like systems. J. Differential Equations 234(2) (2007), 607625.Google Scholar
[24]Langa, J. A., Robinson, J. C. and Suárez, A.. Bifurcation from zero of a complete trajectory for nonautonomous logistic PDEs. Internat. J. Bifur. Chaos Appl. Sci. Engrg. 15(8) (2005), 26632669.Google Scholar
[25]Pliss, V. A. and Sell, G. R.. Robustness of exponential dichotomies in infinite dimensional dynamical systems. J. Dynam. Differential Equations 11 (1999), 471513.Google Scholar
[26]Pliss, V. A. and Sell, G. R.. Perturbations of foliated bundles and evolutionary equations. Ann. Mat. Pura Appl. (4) 185(Suppl.) (2006), S325S388.Google Scholar
[27]Robinson, J. C.. Infinite-Dimensional Dynamical Systems: An Introduction to Dissipative Parabolic PDEs and the Theory of Global Attractors. Cambridge University Press, Cambridge, 2001.CrossRefGoogle Scholar
[28]Rodríguez-Bernal, A. and Vidal-López, A.. Extremal equilibria and asymptotic behavior of parabolic nonlinear reaction-diffusion equations. Nonlinear Elliptic and Parabolic Problems (Progress in Nonlinear Differential Equations and their Applications, 64). Birkhäuser, Basel, 2005, pp. 509516.CrossRefGoogle Scholar
[29]Stuart, A. M. and Humphries, A. R.. Dynamical Systems and Numerical Analysis. Cambridge University Press, Cambridge, 1996.Google Scholar
[30]Temam, R.. Infinite Dimensional Dynamical Systems in Mechanics and Physics. Springer, New York, 1988.Google Scholar