Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-26T00:29:01.716Z Has data issue: false hasContentIssue false

Lamination languages

Published online by Cambridge University Press:  09 November 2012

LUIS-MIGUEL LOPEZ
Affiliation:
Tokyo University of Social Welfare, 2020-1 Sanno-cho, Isesaki, 372-0831 Gunma, Japan (email: [email protected])
PHILIPPE NARBEL
Affiliation:
University of Bordeaux 1, LaBRI - UFR Math-Info, 33405 Talence, France (email: [email protected])

Abstract

Leaves of laminations can be symbolically represented by deforming them into paths of labeled embedded carrier graphs, including train tracks. Here, we describe and characterize the languages of two-way infinite words coming from this kind of coding, called lamination languages, first, by using carrier graph sequences, and second, by using word combinatorics. These characterizations generalize those existing for interval exchange transformations. We also show that lamination languages have ultimately affine factor complexity, and we present effective techniques to build these languages.

Type
Research Article
Copyright
Copyright © 2012 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Adler, R. L., Konheim, A. G. and McAndrew, M. H.. Topological entropy. Trans. Amer. Math. Soc. 114 (1965), 309319.Google Scholar
[2]Allouche, J.-P.. Sur la complexité des suites infinies. Bull. Belg. Math. Soc. 1(2) (1994), 133143.Google Scholar
[3]Allouche, J.-P. and Shallit, J.. Automatic Sequences. Cambridge University Press, Cambridge, 2003.CrossRefGoogle Scholar
[4]Arnoux, P. and Rauzy, G.. Représentation géométrique de suites de complexité $2n+1$. Bull. Soc. Math. France 119 (1991), 199215.Google Scholar
[5]Belov, A. Y. and Chernyatiev, A. L.. Words with low complexity and interval exchange transformations. Russian Math. Surveys 63(1) (2008), 159160.Google Scholar
[6]Belov, A. Y. and Chernyatiev, A. L.. Describing the set of words generated by interval exchange transformation. Comm. Algebra 38(7) (2010), 25882605.Google Scholar
[7]Berthé, V.. Sequences of Low Complexity: Automatic and Sturmian Sequences (Lecture Note Series, 279). Eds. Blanchard, F.et al. Cambridge University Press, Cambridge, 2000, pp. 134.Google Scholar
[8]Bestvina, M. and Handel, M.. Train-tracks for surface homeomorphisms. Topology 34(1) (1995), 109140.Google Scholar
[9]Bonahon, F.. Geodesic laminations on surfaces. Laminations and Foliations in Dynamics, Geometry and Topology (Contemporary Mathematics, 269). American Mathematical Society, Providence, RI, 2001, pp. 137.Google Scholar
[10]Calegari, D.. Foliations and the Geometry of 3-Manifolds (Oxford Mathematical Monographs). Oxford University Press, Oxford, 2007.Google Scholar
[11]Cassaigne, J.. Complexité et facteurs spéciaux. Bull. Belg. Math. Soc. 1(4) (1997), 6788.Google Scholar
[12]Cassaigne, J.. Sequences with grouped factors. Developments in Language Theory DLT’97. Ed. Bozapalidis, S.. Aristotle University of Thessaloniki, 1997, pp. 211222.Google Scholar
[13]Cassaigne, J. and Nicolas, F.. Factor complexity. Combinatorics, Automata and Number Theory (Encyclopedia of Mathematics and its Applications, 135). Cambridge University Press, Cambridge, 2010, pp. 163247.Google Scholar
[14]Casson, A. J. and Bleiler, S.. Automorphisms of Surfaces After Nielsen and Thurston (London Mathematical Society Student Texts, 9). Cambridge University Press, Cambridge, 1988.Google Scholar
[15]Cobham, A.. Uniform tag sequences. Math. Systems Theory 6 (1972), 164192.Google Scholar
[16]Fathi, A.. Démonstration d’un théorème de Penner sur la composition des twists de Dehn. Bull. Soc. Math. France 120(4) (1992), 467484.CrossRefGoogle Scholar
[17]Ferenczi, S.. Complexity of sequences and dynamical systems. Discrete Math. 1–3 (1999), 145154.CrossRefGoogle Scholar
[18]Ferenczi, S. and Zamboni, L. Q.. Languages of $k$-interval exchange transformations. Bull. Lond. Math. Soc. 40(4) (2008), 705714.CrossRefGoogle Scholar
[19]Pytheas Fogg, N.. Substitutions in Dynamics, Arithmetics and Combinatorics (Lecture Notes in Mathematics, 1794). Eds. Berthé, V., Ferenczi, S., Mauduit, C. and Siegel, A.. Springer, Berlin, 2002.Google Scholar
[20]Glen, A. and Justin, J.. Episturmian words: a survey. RAIRO, Theoret. Inform. App. 43 (2009), 403442.Google Scholar
[21]Hadamard, J.. Les surfaces à courbures opposées et leurs lignes géodésiques. J. Math. Pures Appl. 4(5) (1898), 2774.Google Scholar
[22]Harary, F. and Schwenk, A.. A new crossing number for bipartite graphs. Util. Math. 1 (1972), 203209.Google Scholar
[23]Hatcher, A. E.. Measured lamination spaces for surfaces, from the topological viewpoint. Topology Appl. 30(1) (1988), 6388.Google Scholar
[24]Honkala, J.. Lindenmayer systems. Handbook of Weighted Automata (Monographs in Theoretical Computer Science. An EATCS Series). Springer, Berlin, 2009, pp. 291311.CrossRefGoogle Scholar
[25]Kari, L., Rozenberg, G. and Salomaa, A.. L systems. Handbook of Formal Languages, Vol. 1: Word, Language, Grammar. Springer, Berlin, 1997, pp. 253328.Google Scholar
[26]Keane, M.. Interval exchange transformations. Math. Z. 141 (1975), 2531.Google Scholar
[27]Kerckhoff, S. P.. Simplicial systems for interval exchange maps and measured foliations. Ergod. Th. & Dynam. Sys. 5 (1985), 257271.Google Scholar
[28]Lind, D. and Marcus, B.. Symbolic Dynamics and Coding. Cambridge University Press, Cambridge, 1995.Google Scholar
[29]Lopez, L.-M. and Narbel, P.. Substitutions from Rauzy Induction (Developments in Language Theory (Aachen, 1999)). World Scientific Publishing, River Edge, NJ, 2000, pp. 200209.Google Scholar
[30]Lopez, L.-M. and Narbel, P.. Linear complexity words and surface laminations. Bull. Belg. Math. Soc. 8(2) (2001), 307323.Google Scholar
[31]Lopez, L.-M. and Narbel, P.. Languages, D0L-systems, sets of curves, and surface automorphisms. Inform. and Comput. 180(1) (2003), 3052.Google Scholar
[32]Lothaire, M.. Algebraic Combinatorics on Words (Encyclopedia of Mathematics and its Applications, 90). Cambridge University Press, Cambridge, 1997.Google Scholar
[33]Mañé, R.. Ergodic Theory and Differentiable Dynamics. Springer, Berlin, 1987.Google Scholar
[34]Masur, H.. Interval exchange transformations and measured foliations. Ann. of Math. (2) 115(1) (1982), 169200.Google Scholar
[35]Morse, M.. A one-to-one representation of geodesics on a surface of negative curvature. Amer. J. Math. 43 (1921), 3351.Google Scholar
[36]Morse, M. and Hedlund, G. A.. Symbolic dynamics I. Amer. J. Math. 60 (1938), 815866.Google Scholar
[37]Morse, M. and Hedlund, G. A.. Symbolic dynamics II. Sturmian trajectories. Amer. J. Math. 62 (1940), 142.Google Scholar
[38]Narbel, P.. The boundary of iterated morphisms on free semi-groups. Internat. J. Algebra Comput. 6(2) (1996), 229260.Google Scholar
[39]Papadopoulos, A. and Penner, R. C.. A characterization of pseudo-Anosov foliations. Pacific J. Math. 130(2) (1987), 359377.Google Scholar
[40]Penner, R. C.. A construction of pseudo-Anosov homeomorphisms. Trans. Amer. Math. Soc. 310(1) (1988), 179197.Google Scholar
[41]Penner, R. C. and Harer, J. L.. Combinatorics of Train Tracks (Annals of Mathematics Studies, 125). Princeton University Press, Princeton, NJ, 1992.Google Scholar
[42]Quéffelec, M.. Substitution Dynamical Systems—Spectral Analysis, 2nd edn(Lecture Notes in Mathematics, 1294). Springer, Berlin, 2010.CrossRefGoogle Scholar
[43]Rauzy, G.. Échanges d’intervalles et transformations induites. Acta Arith. 34(4) (1979), 315328.Google Scholar
[44]Rauzy, G.. Suites à termes dans un alphabet fini. Seminar on Number Theory, 1982–1983 (Talence, 1982/1983). University of Bordeaux I, 1983 (pages Exp. No. 25, 16).Google Scholar
[45]Rote, G.. Sequences with subword complexity $2n$. J. Number Theory 46(2) (1994), 196213.Google Scholar
[46]Rozenberg, G. and Salomaa, A.. The mathematical theory of L systems (Pure and Applied Mathematics, 90). Academic Press, New York, 1980.Google Scholar
[47]Series, C.. Symbolic dynamics for geodesic flows. Acta Math. 146(1–2) (1981), 103128.CrossRefGoogle Scholar
[48]Series, C.. Geometrical Markov coding of geodesics on surfaces of constant negative curvature. Ergod. Th. & Dynam. Sys. 6(4) (1986), 601625.Google Scholar
[49]Thurston, W. P.. The Geometry and Topology of Three-manifolds (Princeton University Lecture Notes, 1980). (Electronic version 1.1 – March 2002.) http://library.msri.org/books/gt3m. [Accessed, July 2012].Google Scholar
[50]Thurston, W. P.. On the geometry and dynamics of diffeomorphisms of surfaces. Bull. Amer. Math. Soc. (N.S.) 19(2) (1988), 417431.Google Scholar
[51]Weiss, H.. The geometry of measured geodesic laminations and measured train tracks. Ergod. Th. & Dynam. Sys. 9(3) (1989), 587604.CrossRefGoogle Scholar
[52]Zhu, X. and Bonahon, F.. The metric space of geodesic laminations on a surface. I. Geom. Topol. 8 (2004), 539564.Google Scholar