Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-28T15:37:46.877Z Has data issue: false hasContentIssue false

Invariant densities for generalized β-maps

Published online by Cambridge University Press:  01 October 2007

PAWEŁ GÓRA*
Affiliation:
Department of Mathematics and Statistics, Concordia University, 1455 de Maisonneuve Boulevard West, Montreal, Quebec H3G 1M8, Canada (email: [email protected])

Abstract

We find an explicit formula for the invariant density of a generalized β-map. This allows us to also find an explicit formula for the invariant density of Chebyshev map and discuss the monotonicity of the asymptotic average for such maps. Our results are based on a generalization of works of Parry (Acta Math. Acad. Sci. Hungar. 11 (1960), 401–416; 15 (1964), 95–105).

Type
Research Article
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Bassein, S.. The dynamics of a family of one-dimensional maps. Amer. Math. Monthly 105(2) (1998), 118130.CrossRefGoogle Scholar
[2]Billings, L. and Bollt, E. M.. Probability density functions of some skew tent maps. Chaos Solitons Fractals 12(2) (2001), 365376.CrossRefGoogle Scholar
[3]Boyarsky, A. and Góra, P.. Laws of chaos. Invariant measures and dynamical systems in one dimension. Probability and its Applications. Birkhäuser, Boston, MA, 1997.Google Scholar
[4]Boyarsky, A. and Góra, P.. Invariant measures for Chebyshev maps. J. Appl. Math. Stochastic Anal. 14(3) (2001), 257264.CrossRefGoogle Scholar
[5]Cigler, J.. Ziffernverteilung in ϑ-adischen Brüchen. Math. Z. 75 (1960/1961), 8–13 (in German).CrossRefGoogle Scholar
[6]Dajani, K. and Kraaikamp, C.. Ergodic Theory of Numbers (Carus Mathematical Monographs, 29). Mathematical Association of America, Washington, DC, 2002.CrossRefGoogle Scholar
[7]Gelfond, A. O.. A common property of number systems. Izv. Akad. Nauk SSSR. Ser. Mat. 23 (1959), 809814 (in Russian).Google Scholar
[8]Lasota, A. and Andrzej, M. C.. Chaos, Fractals, and Noise. Stochastic Aspects of Dynamics, 2nd edn(Applied Mathematical Sciences, 97). Springer, New York, 1994.CrossRefGoogle Scholar
[9]Lasota, A. and Yorke, J. A.. On the existence of invariant measures for piecewise monotonic transformations. Trans. Amer. Math. Soc. 186 (1973), 481488.CrossRefGoogle Scholar
[10]Leung, H., Yu, H. and Murali, K.. Ergodic chaos-based communication schemes. Phys. Rev. E 66(3) (2002), 036203–1–036203–8.CrossRefGoogle ScholarPubMed
[11]Li, T. Y. and Yorke, J. A.. Ergodic transformations from an interval into itself. Trans. Amer. Math. Soc. 235 (1978), 183192.CrossRefGoogle Scholar
[12]Parry, W.. On the β-expansions of real numbers. Acta Math. Acad. Sci. Hungar. 11 (1960), 401416.CrossRefGoogle Scholar
[13]Parry, W.. Representations for real numbers. Acta Math. Acad. Sci. Hungar. 15 (1964), 95105.CrossRefGoogle Scholar
[14]Rényi, A.. Representations for real numbers and their ergodic properties. Acta Math. Acad. Sci. Hungar. 8 (1957), 477493.CrossRefGoogle Scholar
[15]Ulam, S. M. and von Neumann, J.. On combinations of stochastic and deterministic processes. Bull. Am. Math. Soc. 53 (1947), 1120Google Scholar