Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-24T16:50:45.476Z Has data issue: false hasContentIssue false

Geometric classification of simple graph algebras

Published online by Cambridge University Press:  05 July 2012

ADAM P. W. SØRENSEN*
Affiliation:
Department of Mathematical Sciences, University of Copenhagen, Universitetsparken 5, DK-2100, Copenhagen Ø, Denmark (email: [email protected])

Abstract

Inspired by Franks’ classification of irreducible shifts of finite type, we provide a short list of allowed moves on graphs that preserve the stable isomorphism class of the associated $C^*$-algebras. We show that if two graphs have stably isomorphic and simple unital algebras then we can use these moves to transform one into the other.

Type
Research Article
Copyright
Copyright © 2012 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[A{Á}LP08]Abrams, G., Ánh, P. N., Louly, A. and Pardo, E.. The classification question for Leavitt path algebras. J. Algebra 320(5) (2008), 19832026.Google Scholar
[ALPS11]Abrams, G., Louly, A., Pardo, E. and Smith, C.. Flow invariants in the classification of Leavitt path algebras. J. Algebra 333 (2011), 202231.Google Scholar
[BH03]Boyle, M. and Huang, D.. Poset block equivalence of integral matrices. Trans. Amer. Math. Soc. 355(10) (2003), 38613886 (electronic).CrossRefGoogle Scholar
[BHRS02]Bates, T., Hong, J. H., Raeburn, I. and Szymański, W.. The ideal structure of the $C^*$-algebras of infinite graphs. Illinois J. Math. 46(4) (2002), 11591176.Google Scholar
[Boy02]Boyle, M.. Flow equivalence of shifts of finite type via positive factorizations. Pacific J. Math. 204(2) (2002), 273317.CrossRefGoogle Scholar
[BP04]Bates, T. and Pask, D.. Flow equivalence of graph algebras. Ergod. Th. & Dynam. Sys. 24(2) (2004), 367382.CrossRefGoogle Scholar
[CG06]Crisp, T. and Gow, D.. Contractible subgraphs and Morita equivalence of graph $C^*$-algebras. Proc. Amer. Math. Soc. 134(7) (2006), 20032013.Google Scholar
[CK80]Cuntz, J. and Krieger, W.. A class of $C^{\ast } $-algebras and topological Markov chains. Invent. Math. 56(3) (1980), 251268.CrossRefGoogle Scholar
[DS01]Drinen, D. and Sieben, N.. $C^\ast $-equivalences of graphs. J. Operator Theory 45(1) (2001), 209229.Google Scholar
[DT02]Drinen, D. and Tomforde, M.. Computing $K$-theory and ${\rm Ext}$ for graph $C^*$-algebras. Illinois J. Math. 46(1) (2002), 8191.Google Scholar
[DT05]Drinen, D. and Tomforde, M.. The $C^*$-algebras of arbitrary graphs. Rocky Mountain J. Math. 35(1) (2005), 105135.Google Scholar
[EFW81]Enomoto, M., Fujii, M. and Watatani, Y.. $K_{0}$-groups and classifications of Cuntz–Krieger algebras. Math. Japon. 26(4) (1981), 443460.Google Scholar
[ERR10]Eilers, S., Restorff, G. and Ruiz, E.. On graph $C^*$-algebras with a linear ideal lattice. Bull. Malays. Math. Sci. Soc. 33(2) (2010), 223241.Google Scholar
[ERS11]Eilers, S., Ruiz, E. and Sørensen, A. P. W.. Amplified graph algebras, 2011, arXiv:1110.2758.Google Scholar
[ET10]Eilers, S. and Tomforde, M.. On the classification of nonsimple graph $C^*$-algebras. Math. Ann. 346(2) (2010), 393418.Google Scholar
[EW80]Enomoto, M. and Watatani, Y.. A graph theory for $C^{\ast } $-algebras. Math. Jpon. 25(4) (1980), 435442.Google Scholar
[Fra84]Franks, J.. Flow equivalence of subshifts of finite type. Ergod. Th. & Dynam. Sys. 4(1) (1984), 5366.Google Scholar
[Hua94]Huang, D.. Flow equivalence of reducible shifts of finite type. Ergod. Th. & Dynam. Sys. 14(4) (1994), 695720.CrossRefGoogle Scholar
[KPRR97]Kumjian, A., Pask, D., Raeburn, I. and Renault, J.. Graphs, groupoids, and Cuntz–Krieger algebras. J. Funct. Anal. 144(2) (1997), 505541.CrossRefGoogle Scholar
[Phi00]Phillips, N.C.. A classification theorem for nuclear purely infinite simple $C^*$-algebras. Doc. Math. 5 (2000), 49114 (electronic).Google Scholar
[PS75]Parry, B. and Sullivan, D.. A topological invariant of flows on 1-dimensional spaces. Topology 14(4) (1975), 297299.Google Scholar
[Rae05]Raeburn, I.. Graph Algebras (CBMS Regional Conference Series in Mathematics, 103). American Mathematical Society, Providence, RI, 2005.Google Scholar
[Res06]Restorff, G.. Classification of Cuntz–Krieger algebras up to stable isomorphism. J. Reine Angew. Math. 598 (2006), 185210.Google Scholar
[R{\OT1\o }r95]Rørdam, M.. Classification of Cuntz–Krieger algebras. K-Theory 9(1) (1995), 3158.Google Scholar
[Rot02]Rotman, J. J.. Advanced Modern Algebra. Prentice-Hall, Upper Saddle River, NJ, 2002.Google Scholar