Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-11T10:15:38.826Z Has data issue: false hasContentIssue false

Generic properties of homeomorphisms preserving a given dynamical simplex

Published online by Cambridge University Press:  25 October 2021

JULIEN MELLERAY*
Affiliation:
Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5208, Institut Camille Jordan, F-69622 Villeurbanne, France
*

Abstract

Given a dynamical simplex K on a Cantor space X, we consider the set $G_K^*$ of all homeomorphisms of X which preserve all elements of K and have no non-trivial clopen invariant subset. Generalizing a theorem of Yingst, we prove that for a generic element g of $G_K^*$ the set of invariant measures of g is equal to K. We also investigate when there exists a generic conjugacy class in $G_K^*$ and prove that this happens exactly when K has only one element, which is the unique invariant measure associated to some odometer; and that in that case the conjugacy class of this odometer is generic in $G_K^*$ .

Type
Original Article
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Akin, E.. Good measures on Cantor space. Trans. Amer. Math. Soc. 357(7) (2005), 26812722 (electronic).CrossRefGoogle Scholar
Bezuglyi, S., Dooley, A. H. and Kwiatkowski, J.. Topologies on the group of homeomorphisms of a Cantor set. Topol. Methods Nonlinear Anal. 27(2) (2006), 299331.Google Scholar
Ben Yaacov, I., Melleray, J. and Tsankov, T.. Metrizable universal minimal flows of Polish groups have a comeagre orbit. Geom. Funct. Anal. 27(1) (2017), 6777.CrossRefGoogle Scholar
Dahl, H.. Cantor minimal systems and AF equivalence relations. PhD Thesis, Norwegian University of Science and Technology, Trondheim (Denmark), 2008.Google Scholar
Dougherty, R., Mauldin, R. D. and Yingst, A.. On homeomorphic Bernoulli measures on the Cantor space. Trans. Amer. Math. Soc. 359(12) (2007), 61556166.CrossRefGoogle Scholar
Gao, S.. Invariant Descriptive Set Theory (Pure and Applied Mathematics, 293). CRC Press, Boca Raton, FL, 2009.Google Scholar
Glasner, E. and Weiss, B.. Weak orbit equivalence of Cantor minimal systems. Internat. J. Math. 6(4) (1995), 559579.CrossRefGoogle Scholar
Ibarlucía, T. and Melleray, J.. Dynamical simplices and minimal homeomorphisms. Proc. Amer. Math. Soc. 145(11) (2017), 49814994.CrossRefGoogle Scholar
Melleray, J.. Dynamical simplices and Fraïssé theory. Ergod. Th. & Dynam. Sys. 39(11) (2019), 31113126.CrossRefGoogle Scholar
Yingst, A. Q.. A context in which finite or unique ergodicity is generic. Ergod. Th. & Dynam. Sys. 41 (2020), 123.Google Scholar