Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-28T03:11:41.254Z Has data issue: false hasContentIssue false

Generalized Hausdorff dimensions of sets of real numbers with zero entropy expansion

Published online by Cambridge University Press:  19 September 2011

CHRISTIAN MAUDUIT
Affiliation:
Institut de Mathématiques de Luminy, 163, avenue de Luminy, 13288 Marseille Cedex 9, France (email: [email protected])
CARLOS GUSTAVO MOREIRA
Affiliation:
Instituto de Matemática Pura e Aplicada, Estrada Dona Castorina 110, 22460-320 Rio de Janeiro, RJ, Brasil

Abstract

The complexity function of an infinite word w on a finite alphabet A is the sequence counting, for each non-negative integer n, the number of words of length n on the alphabet A that are factors of the infinite word w. Let f be a given function with subexponential growth. The goal of this work is to estimate the generalized Hausdorff dimensions of the set of real numbers whose q-adic expansion has a complexity function bounded by f and the set of real numbers whose continued fraction expansion is bounded by q and has a complexity function bounded by f.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[AB05]Adamczewski, B. and Bugeaud, Y.. On the complexity of algebraic numbers II. Continued fractions. Acta Math. 195 (2005), 120.CrossRefGoogle Scholar
[AB07]Adamczewski, B. and Bugeaud, Y.. On the complexity of algebraic numbers I. Expansions in integer bases. Ann. of Math. (2) 165(2) (2007), 547565.CrossRefGoogle Scholar
[ADQZ01]Allouche, J.-P., Davison, J.-L., Queffélec, M. and Zamboni, L.. Transcendence of Sturmian or morphic continued fractions, infinies. J. Number Theory 91(1) (2001), 3966.CrossRefGoogle Scholar
[All94]Allouche, J.-P.. Sur la complexité des suites infinies. Bull. Belg. Math. Soc. Simon Stevin 1(2) (1994), 133143.CrossRefGoogle Scholar
[BP93]Berstel, J. and Pocchiola, M.. A geometric proof of the enumeration formula for Sturmian words. Internat. J. Algebra Comput. 3 (1993), 349355.CrossRefGoogle Scholar
[Bes34]Besicovitch, A. S.. Sets of fractional dimensions: on rational approximation to real numbers. J. Lond. Math. Soc. 9 (1934), 126131.CrossRefGoogle Scholar
[Bor50]Borel, E.. Sur les chiffres decimaux de et divers problèmes de probabilités en chaîne. C. R. Acad. Sci. Paris 230 (1950), 591593.Google Scholar
[Bug04]Bugeaud, Y.. Approximation by Algebraic Numbers (Cambridge Tracts in Mathematics, 160). Cambridge University Press, Cambridge, 2004.CrossRefGoogle Scholar
[Bum85]Bumby, R. T.. Hausdorff dimension of sets arising in number theory. Number Theory (New York, 1983–84) (Lecture Notes in Mathematics, 1135). Springer, Berlin, 1985, pp. 18.Google Scholar
[CH73]Coven, E. M. and Hedlund, G. A.. Sequences with minimal block growth. Math. Syst. Theory 7 (1973), 138153.CrossRefGoogle Scholar
[Cus77]Cusick, T. W.. Continuants with bounded digits. Mathematika 24(2) (1977), 166172.CrossRefGoogle Scholar
[Cus78]Cusick, T. W.. Continuants with bounded digits. II. Mathematika 25(1) (1978), 107109.CrossRefGoogle Scholar
[Egg49]Eggleston, H. G.. The fractional dimension of a set defined by decimal properties. Quart. J. Math. Oxford Ser. 20 (1949), 3136.CrossRefGoogle Scholar
[Fal86]Falconer, K. J.. The Geometry of Fractal Sets (Cambridge Tracts in Mathematics, 85). Cambridge University Press, Cambridge, 1986.Google Scholar
[Fer99]Ferenczi, S.. Complexity of sequences and dynamical systems. Discrete Math. 206(1–3) (1999), 145154.CrossRefGoogle Scholar
[FM97]Ferenczi, S. and Mauduit, C.. Transcendence of numbers with a low complexity expansion. J. Number Theory 67 (1997), 146161.CrossRefGoogle Scholar
[Goo41]Good, I. J.. The fractional dimensional theory of continued fractions. Proc. Cambridge Philos. Soc. 37 (1941), 199228.CrossRefGoogle Scholar
[Hau18]Hausdorff, F.. Dimension und äusseres Mass. Math. Ann. 79 (1918), 157179.CrossRefGoogle Scholar
[HM38]Hedlund, G. A. and Morse, M.. Symbolics dynamics. Amer. J. Math. 60 (1938), 815866.Google Scholar
[HM40]Hedlund, G. A. and Morse, M.. Symbolics dynamics II. Sturmian trajectories. Amer. J. Math. 62 (1940), 142.Google Scholar
[Hen89]Hensley, D.. The Hausdorff dimensions of some continued fraction Cantor sets. J. Number Theory 33(2) (1989), 182198.CrossRefGoogle Scholar
[Hen92]Hensley, D.. Continued fraction Cantor sets, Hausdorff dimensions, and functional analysis. J. Number Theory 40(3) (1992), 336358.CrossRefGoogle Scholar
[Hen96]Hensley, D.. A polynomial time algorithm for the Hausdorff dimension of continued fraction Cantor sets. J. Number Theory 58(1) (1996), 945.CrossRefGoogle Scholar
[Hen06]Hensley, D.. Continued Fractions. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2006.CrossRefGoogle Scholar
[Jar28]Jarník, V.. Zur metrischen Theory der diophantischen Approximationen. Prace Mat.-Fiz. 36 (1928), 91106.Google Scholar
[Jen04]Jenkinson, O.. On the density of Hausdorff dimensions of bounded type continued fraction sets: the Texan conjecture. Stoch. Dyn. 4(1) (2004), 6376.CrossRefGoogle Scholar
[JP01]Jenkinson, O. and Pollicott, M.. Computing the dimension of dynamically defined sets: E 2 and bounded continued fractions. Ergod. Th. & Dynam. Sys. 21 (2001), 14291445.CrossRefGoogle Scholar
[KLB90]Koplowitz, J., Lindenbaum, M. and Bruckstein, A.. The number of digital straight lines on an n×n grid. IEEE Trans. Inform. Theory 36 (1990), 192197.CrossRefGoogle Scholar
[Kur03]Kůrka, P.. Topological and Symbolic Dynamics (Cours spécialisés SMF, 11). Société Mathématique de France, Paris, 2003.Google Scholar
[Lip82]Lipatov, E. P.. On some classification of binary words and some properties of uniformity classes. Problemy Kibernet. 39 (1982), 6784 (in Russian).Google Scholar
[Lot02]Lothaire, M.. Algebraic Combinatorics on Words (Encyclopedia of Mathematics and Its Applications, 90). Cambridge University Press, Cambridge, 2002.CrossRefGoogle Scholar
[LM94]de Luca, A. and Mignosi, F.. Some combinatorial properties of Sturmian words. Theoret. Comput. Sci. 136 (1994), 361385.CrossRefGoogle Scholar
[MS97]Mauduit, C. and Sárközy, A.. On finite binary pseudorandom sequences. I. Measure of pseudorandomness, the Legendre symbol. Acta Arith. 82 (1997), 365377.CrossRefGoogle Scholar
[MS98]Mauduit, C. and Sárközy, A.. On finite binary pseudorandom sequences. II. The Champernowne, Rudin–Shapiro and Thue–Morse sequence, a further construction. J. Number Theory 73(2) (1998), 256276.CrossRefGoogle Scholar
[Mat95]Mattila, P.. Geometry of Sets and Measures in Euclidean Spaces. Cambridge University Press, Cambridge, 1995.CrossRefGoogle Scholar
[MZ02]Mignosi, F. and Zamboni, L.. On the number of Arnoux–Rauzy words. Acta Arith. 101 (2002), 121129.CrossRefGoogle Scholar
[Mig91]Mignosi, F.. On the number of factors of sturmian words. Theoret. Comput. Sci. 82 (1991), 7184.CrossRefGoogle Scholar
[MM10]Mauduit, C. and Moreira, C. G.. Complexity of infinite sequences with zero entropy. Acta Arith. 142 (2010), 331346.CrossRefGoogle Scholar
[PF02]Pytheas Fogg, N.. Substitutions in Dynamics, Arithmetics and Combinatorics (Lecture Notes in Mathematics, 1794). Eds. Berthé, V., Ferenczi, S., Mauduit, C. and Siegel, A.. Springer, Berlin, 2002.CrossRefGoogle Scholar
[Que87]Queffélec, M.. Substitution Dynamical Systems—Spectral Analysis (Lecture Notes in Mathematics, 1294). Springer, Berlin, 1987.CrossRefGoogle Scholar
[Sha92]Shallit, J.. Real numbers with bounded partial quotients: a survey. Enseign. Math. 38 (1992), 151187.Google Scholar