Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-27T02:43:13.479Z Has data issue: false hasContentIssue false

Generalized Fredholm determinants and Selberg zeta functions for Axiom A dynamical systems

Published online by Cambridge University Press:  19 September 2008

Hans Henrik Rugh
Affiliation:
I.H.E.S., 35 route de Chartres, F-91440 Bures-sur-Yvette, France

Abstract

We consider a generalized Fredholm determinant d(z) and a generalized Selberg zeta function ζ(ω)−1 for Axiom A diffeomorphisms of a surface and Axiom A flows on three-dimensional manifolds, respectively. We show that d(z) and ζ(ω)−1 extend to entire functions in the complex plane. That the functions are entire and not only meromorphic is proved by a new method, identifying removable singularities by a change of Markov partitions.

Type
Survey Article
Copyright
Copyright © Cambridge University Press 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Bowen, R.. Amer. J. Math. 92 (1970), 725747.Google Scholar
[2]Bowen, R.. Amer. J. Math. 95 (1973), 429460.CrossRefGoogle Scholar
[3]Bowen, R.. Equilibrium States and the Ergodic Theory of Anosov-diffeomorphisms (Lecture Notes in Mathematics 470). Springer, Berlin, 1975.CrossRefGoogle Scholar
[4]Cvitanovié, P. and Eckhardt, B.. Phys. Rev. Lett. 63 (1989), 823.CrossRefGoogle Scholar
[5]Douady, A. and Bonavero, L.. Personal communication. The presented version of the proof is due to A. Douady.Google Scholar
[6]Fried, D.. Ann. scient. Ec. Norm. Sup. 19 (1986), 491.Google Scholar
[7]Fried, D.. The Selberg trace formula and related topics (proc. 1984 conf. at Bowdoin College). Contemp. Math. 53 (1986), 141163.CrossRefGoogle Scholar
[8]Fried, D.. Meromorphic Zeta Functions for Analytic Flows. Preprint, Boston University, 1993.Google Scholar
[9]Gaspard, P. and Rice, S.. J. Chem. Phys. 90 (1989), 2225, 2242, 2255.CrossRefGoogle Scholar
[10]Ghys, É.. Ann. Sci. École Norm. Sup. (4) 20 (1987), 251270.Google Scholar
[11]Griffiths, P. and Harris, J.. Principles of Algebraic Geometry. Wiley, New York, 1978.Google Scholar
[12]Gunning, R. C. and Rossi, H.. Analytic Functions of Several Complex Variables. Prentice-Hall, Englewood Cliffs, NJ, 1965.Google Scholar
[13]Hirsch, M. W. and Pugh, C. C.. Proc. Symp. pure Math., Amer. Math. Soc. 14 (1970), 125131.Google Scholar
[14]Isola, S.. Comm. Math. Phys. 116 (1988), 33.Google Scholar
[15]Manning, A.. Bull. Amer. Math. Soc. 3 (1971), 215220;Google Scholar
Ann. Math. 118 (1983), 573.CrossRefGoogle Scholar
[16]Parry, W. and Pollicott, M.. Zeta Functions and the Periodic Structure of Hyperbolic Dynamics (Astérisque 187, 188). Société Mathématique de France, Paris, 1990.Google Scholar
[17]Ruelle, D.. Invent. Math. 34 (1976), 231242.CrossRefGoogle Scholar
[18]Ruelle, D.. Statistical Mechanics, Thermodynamic Formalism. Addison-Wesley, Reading, 1978.Google Scholar
[19]Ruelle, D.. Comm. Math. Phys. 125(2) (1989), 239.Google Scholar
[20]Ruelle, D.. Publ. Math. IHES. 72 (1990), 175193.CrossRefGoogle Scholar
[21]Rugh, H. H.. Nonlinearity 5 (1992), 12371263.Google Scholar
[22]Selberg, A.. J. Indian. Math. Soc. 20 (1956), 4787.Google Scholar
[23]Smale, S.. Bull. Am. Math. Soc. 73 (1967), 747817.CrossRefGoogle Scholar