Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-28T07:37:51.151Z Has data issue: false hasContentIssue false

Fatou–Julia theory for non-uniformly quasiregular maps

Published online by Cambridge University Press:  16 December 2011

WALTER BERGWEILER*
Affiliation:
Mathematisches Seminar, Christian-Albrechts-Universität zu Kiel, Ludewig-Meyn-Str. 4, D-24098 Kiel, Germany (email: [email protected])

Abstract

Many results of the Fatou–Julia iteration theory of rational functions extend to uniformly quasiregular maps in higher dimensions. We obtain results of this type for certain classes of quasiregular maps which are not uniformly quasiregular.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Ahlfors, L. V.. Conformal Invariants: Topics in Geometric Function Theory. McGraw-Hill, New York, 1973.Google Scholar
[2]Beardon, A. F.. Iteration of Rational Functions (Graduate Texts in Mathematics, 91). Springer, New York, 1991.CrossRefGoogle Scholar
[3]Bergweiler, W.. Iteration of quasiregular mappings. Comput. Methods Funct. Theory 10 (2010), 455481.CrossRefGoogle Scholar
[4]Bergweiler, W.. Karpińska’s paradox in dimension 3. Duke Math. J. 154 (2010), 599630.CrossRefGoogle Scholar
[5]Bergweiler, W. and Eremenko, A.. Dynamics of a higher dimensional analogue of the trigonometric functions. Ann. Acad. Sci. Fenn. Math. 36 (2011), 165175.CrossRefGoogle Scholar
[6]Bergweiler, W., Fletcher, A., Langley, J. and Meyer, J.. The escaping set of a quasiregular mapping. Proc. Amer. Math. Soc. 137 (2009), 641651.CrossRefGoogle Scholar
[7]Eremënko, A. È.. On the iteration of entire functions. Dynamical Systems and Ergodic Theory (Banach Center Publications, 23). Polish Scientific Publishers, Warsaw, 1989, pp. 339345.Google Scholar
[8]Fletcher, A. and Nicks, D. A.. Quasiregular dynamics on the n-sphere. Ergod. Th. & Dynam. Sys. 31 (2011), 2331.CrossRefGoogle Scholar
[9]Fletcher, A. and Nicks, D. A.. Julia sets of uniformly quasiregular mappings are uniformly perfect. Math. Proc. Cambridge Philos. Soc., doi:10.1017/S0305004111000478.CrossRefGoogle Scholar
[10]Garber, V.. On the iteration of rational functions. Math. Proc. Cambridge Philos. Soc. 84 (1978), 497505.CrossRefGoogle Scholar
[11]Gehring, F. W.. A remark on domains quasiconformally equivalent to a ball. Ann. Acad. Sci. Fenn. Ser. A I Math. 2 (1976), 147155.CrossRefGoogle Scholar
[12]Hinkkanen, A., Martin, G. J. and Mayer, V.. Local dynamics of uniformly quasiregular mappings. Math. Scand. 95 (2004), 80100.CrossRefGoogle Scholar
[13]Iwaniec, T. and Martin, G. J.. Geometric Function Theory and Non-linear Analysis (Oxford Mathematical Monographs). Oxford University Press, New York, 2001.CrossRefGoogle Scholar
[14]Martin, G. J.. Branch sets of uniformly quasiregular maps. Conform. Geom. Dyn. 1 (1997), 2427.CrossRefGoogle Scholar
[15]Martio, O.. A capacity inequality for quasiregular mappings. Ann. Acad. Sci. Fenn. Ser. A I No. 474 (1970) 18 pp.Google Scholar
[16]Mattila, P. and Rickman, S.. Averages of the counting function of a quasiregular mapping. Acta Math. 143 (1979), 273305.CrossRefGoogle Scholar
[17]Mayer, V.. Uniformly quasiregular mappings of Lattès type. Conform. Geom. Dyn. 1 (1997), 104111.CrossRefGoogle Scholar
[18]Milnor, J.. Dynamics in one Complex Variable, 3rd edn(Annals of Mathematics Studies 160). Princeton University Press, Princeton, NJ, 2006.Google Scholar
[19]Miniowitz, R.. Normal families of quasimeromorphic mappings. Proc. Amer. Math. Soc. 84 (1982), 3543.CrossRefGoogle Scholar
[20]Przytycki, F. and Urbañski, M.. Conformal Fractals: Ergodic Theory Methods (London Mathematical Society Lecture Note Series, 371). Cambridge University Press, Cambridge, 2010.CrossRefGoogle Scholar
[21]Reshetnyak, Yu. G.. Space Mappings with Bounded Distortion (Translations of Mathematical Monographs, 73). American Mathematical Society, Providence, RI, 1989.CrossRefGoogle Scholar
[22]Rickman, S.. On the number of omitted values of entire quasiregular mappings. J. Anal. Math. 37 (1980), 100117.CrossRefGoogle Scholar
[23]Rickman, S.. The analogue of Picard’s theorem for quasiregular mappings in dimension three. Acta Math. 154 (1985), 195242.CrossRefGoogle Scholar
[24]Rickman, S.. Quasiregular Mappings (Ergebnisse der Mathematik und ihrer Grenzgebiete (3), 26). Springer, Berlin, 1993.CrossRefGoogle Scholar
[25]Sarvas, J.. Symmetrization of condensers in n-space. Ann. Acad. Sci. Fenn. Ser. A I No. 522 (1972) 44 pp.Google Scholar
[26]Siebert, H.. Fixpunkte und normale Familien quasiregulärer Abbildungen. Dissertation, University of Kiel, (2004); http://e-diss.uni-kiel.de/diss_1260.Google Scholar
[27]Srebro, U.. Quasiregular mappings. Advances in Complex Function Theory (Lecture Notes in Mathematics, 505). Springer, Berlin, 1976, pp. 148163.CrossRefGoogle Scholar
[28]Steinmetz, N.. Rational Iteration (De Gruyter Studies in Mathematics, 16). Walter de Gruyter & Co, Berlin, 1993.CrossRefGoogle Scholar
[29]Sun, D. and Yang, L.. Quasirational dynamical systems (Chinese). Chinese Ann. Math. Ser. A 20 (1999), 673684.Google Scholar
[30]Sun, D. and Yang, L.. Quasirational dynamic system. Chinese Science Bull. 45 (2000), 12771279.CrossRefGoogle Scholar
[31]Sun, D. and Yang, L.. Iteration of quasi-rational mapping. Prog. Nat. Sci. (English Ed.) 11 (2001), 1625.Google Scholar
[32]Vuorinen, M.. Some inequalities for the moduli of curve families. Michigan Math. J. 30 (1983), 369380.Google Scholar
[33]Vuorinen, M.. Conformal Geometry and Quasiregular Mappings (Lecture Notes in Mathematics, 1319). Springer, Berlin, 1988.CrossRefGoogle Scholar
[34]Wallin, H.. Metrical characterization of conformal capacity zero. J. Math. Anal. Appl. 58 (1977), 298311.CrossRefGoogle Scholar
[35]Walters, P.. An Introduction to Ergodic Theory (Graduate Texts in Mathematics, 79). Springer, New York, 1982.CrossRefGoogle Scholar
[36]Zalcman, L.. A heuristic principle in complex function theory. Amer. Math. Monthly 82 (1975), 813817.CrossRefGoogle Scholar