Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-24T15:09:07.853Z Has data issue: false hasContentIssue false

Existence de points fixes enlacés à une orbite périodique d'un homéomorphisme du plan

Published online by Cambridge University Press:  19 September 2008

Christian Bonatti
Affiliation:
Laboratoire de Topologie URA CNRS 755, Département de Mathématiques, Université de Bourgogne, BP 138, 21004 Dijon Cedex, France
Boris Kolev
Affiliation:
INLN, UMR CNRS 129, Université de Nice, Pare Valrose, F-06034 Nice Cedex, France

Abstract

Let ƒ be an orientation-preserving homeomorphism of the plane such that ƒ-Id is contracting. Under these hypotheses, we establish the existence for every periodic orbit , of a fixed point which has a nonzero linking number with .

Type
Research Article
Copyright
Copyright © Cambridge University Press 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

BIBLIOGRAPHIQUES

[B-F]Boyland, P. & Franks, J.. Notes on dynamics of surface homeomorphisms. Informal lectures notes, Warwick (1989).Google Scholar
[Br]Brown, R.. Fixed points for orientation preserving homeomorphisms of the plane which interchange two points. Pacific J. Math. 143 1 (1990).Google Scholar
[Fr]Franks, J.. Geodesies on S2 and periodic points of annulus diffeomorphisms. Preprint (1991).Google Scholar
[Ga]Gambaudo, J. M.. Periodic orbits and fixed points of a C1 orientation preserving embedding of D2. Math. Proc. Camb. Phil Soc. 108 (1990), 307.Google Scholar
[Gu]Guaschi, J.. Fixed points and linking with periodic orbits of surface difleomorphisms and a generalisation of Brouwer's lemma. Preprint, Warwick University (1990).Google Scholar
[K]Kolev, B.. Point fixe lié à une orbite périodique d'un difféomorphisme de R2. C. R. Acad. Sci. Paris 310 Série I (1990), 831833.Google Scholar