Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-11T15:51:59.279Z Has data issue: false hasContentIssue false

Entropy in uniformly quasiregular dynamics

Published online by Cambridge University Press:  22 June 2020

ILMARI KANGASNIEMI
Affiliation:
Department of Mathematics and Statistics, P.O. Box 68 (Pietari Kalmin katu 5), FI-00014 University of Helsinki, Finland (e-mail: [email protected], [email protected])
YÛSUKE OKUYAMA
Affiliation:
Division of Mathematics, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585, Japan (e-mail: [email protected])
PEKKA PANKKA
Affiliation:
Department of Mathematics and Statistics, P.O. Box 68 (Pietari Kalmin katu 5), FI-00014 University of Helsinki, Finland (e-mail: [email protected], [email protected])
TUOMAS SAHLSTEN
Affiliation:
School of Mathematics, University of Manchester, UK (e-mail: [email protected])

Abstract

Let $M$ be a closed, oriented, and connected Riemannian $n$-manifold, for $n\geq 2$, which is not a rational homology sphere. We show that, for a non-constant and non-injective uniformly quasiregular self-map $f:M\rightarrow M$, the topological entropy $h(f)$ is $\log \deg f$. This proves Shub’s entropy conjecture in this case.

Type
Original Article
Copyright
© The Author(s) 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bihari, I.. A generalization of a lemma of Bellman and its application to uniqueness problems of differential equations. Acta Math. Acad. Sci. Hungar. 7 (1956), 8194.Google Scholar
Bojarski, B. and Iwaniec, T.. Analytical foundations of the theory of quasiconformal mappings in R n . Ann. Acad. Sci. Fenn. Ser. A I Math. 8(2) (1983), 257324.Google Scholar
Bonk, M. and Heinonen, J.. Quasiregular mappings and cohomology. Acta Math. 186(2) (2001), 219238.Google Scholar
Bowen, R.. Entropy for group endomorphisms and homogeneous spaces. Trans. Amer. Math. Soc. 153 (1971), 401414.Google Scholar
Favre, C. and Rivera-Letelier, J.. Thèorie ergodique des fractions rationnelles sur un corps ultramétrique. Proc. Lond. Math. Soc. 100(1) (2010), 116154.Google Scholar
Federer, H.. Geometric Measure Theory (Die Grundlehren der Mathematischen Wissenschaften, 153). Springer, New York, 1969.Google Scholar
Gol’dshtein, V. and Troyanov, M.. A conformal de Rham complex. J. Geom. Anal. 20(3) (2010), 651669.Google Scholar
Gromov, M.. On the entropy of holomorphic maps. Enseign. Math. (2) 49(3-4) (2003), 217235.Google Scholar
Haïssinsky, P. and Pilgrim, K.. Coarse expanding conformal dynamics. Asterisque 325 (2009), viii+139pp.Google Scholar
Hajłasz, P.. Sobolev mappings, co-area formula and related topics. Proceedings on Analysis and Geometry (Russian) (Novosibirsk Akademgorodok, 1999). Sobolev Institute Press, Novosibirsk, 2000, pp. 227254.Google Scholar
Heinonen, J.. Lectures on Analysis on Metric Spaces (Universitext). Springer, New York, 2001.Google Scholar
Heinonen, J., Kilpeläinen, T. and Martio, O.. Nonlinear Potential Theory of Degenerate Elliptic Equations. Dover Publications, Inc, Mineola, NY, 2006. Unabridged republication of the 1993 original.Google Scholar
Iwaniec, T. and Martin, G.. Quasiregular semigroups. Ann. Acad. Sci. Fenn. Math. 21(2) (1996), 241254.Google Scholar
Iwaniec, T. and Martin, G.. Geometric Function Theory and Non-Linear Analysis (Oxford Mathematical Monographs). The Clarendon Press, Oxford University Press, New York, 2001.Google Scholar
Kangaslampi, R.. Uniformly quasiregular mappings on elliptic Riemannian manifolds. Ann. Acad. Sci. Fenn. Math. Diss. 151 (2008), 72 pp.Google Scholar
Kangasniemi, I.. Sharp cohomological bound for uniformly quasiregularly elliptic manifolds. Preprint, 2017, Amer. J. Math. to appear.Google Scholar
Kangasniemi, I. and Pankka, P.. Uniform cohomological expansion of uniformly quasiregular mappings. Proc. Lond. Math. Soc. 118(3) (2019), 701728.Google Scholar
Katok, A. B.. The entropy conjecture. Smooth Dynamical Systems. Izdat. ‘Mir’, Moscow, 1977, pp. 181203 (in Russian).Google Scholar
Ljubich, M. J.. Entropy properties of rational endomorphisms of the Riemann sphere. Ergod. Th. & Dynam. Sys. 3(3) (1983), 351385.Google Scholar
Mañé, R., Sad, P. and Sullivan, D.. On the dynamics of rational maps. Ann. Sci. Éc. Norm. Supér. (4) 16(2) (1983), 193217.Google Scholar
Martin, G., Mayer, V. and Peltonen, K.. The generalized Lichnerowicz problem: uniformly quasiregular mappings and space forms. Proc. Amer. Math. Soc. 134(7) (2006), 20912097.Google Scholar
Martin, G. and Peltonen, K.. Stoïlow factorization for quasiregular mappings in all dimensions. Proc. Amer. Math. Soc. 138(1) (2010), 147151.Google Scholar
Martin, G. J.. The theory of quasiconformal mappings in higher dimensions, I. Handbook of Teichmüller theory. Vol. IV (IRMA Lectures in Mathematics and Theoretical Physics, 19). European Mathematical Society, Zürich, 2014, pp. 619677.Google Scholar
Martin, G. J. and Mayer, V.. Rigidity in holomorphic and quasiregular dynamics. Trans. Amer. Math. Soc. 355(11) (2003), 43494363.Google Scholar
Mayer, V.. Uniformly quasiregular mappings of Lattès type. Conform. Geom. Dyn. 1 (1997), 104111.Google Scholar
Misiurewicz, M. and Przytycki, F.. Topological entropy and degree of smooth mappings. Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 25(6) (1977), 573574.Google Scholar
Okuyama, Y. and Pankka, P.. Equilibrium measures for uniformly quasiregular dynamics. J. Lond. Math. Soc. (2) 89(2) (2014), 524538.Google Scholar
Peltonen, K.. Examples of uniformly quasiregular mappings. Conform. Geom. Dyn. 3 (1999), 158163.Google Scholar
Prywes, E.. A bound on the cohomology of quasiregularly elliptic manifolds. Ann. of Math. (2) 189(3) (2019), 863883.Google Scholar
Przytycki, F. and Urbański, M.. Conformal Fractals: Ergodic Theory Methods. Cambridge University Press, Cambridge, 2010.Google Scholar
Rickman, S.. Quasiregular Mappings (Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], 26). Springer, Berlin, 1993.Google Scholar
Rohlin, V. A.. On the fundamental ideas of measure theory. Mat. Sb. (N.S.) 25(67) (1949), 107150.Google Scholar
Rohlin, V. A.. Lectures on the entropy theory of transformations with invariant measure. Uspekhi Mat. Nauk 22(5 (137)) (1967), 356.Google Scholar
Shub, M.. Dynamical systems, filtrations and entropy. Bull. Amer. Math. Soc. 80 (1974), 2741.Google Scholar
Srivastava, S. M.. A Course in Borel Sets. Springer, New York, 1998.Google Scholar
Väisälä, J.. Discrete open mappings on manifolds. Ann. Acad. Sci. Fenn. A I 392 (1966), 110.Google Scholar
Varopoulos, N. T., Saloff-Coste, L. and Coulhon, T.. Analysis and Geometry on Groups (Cambridge Tracts in Mathematics, 100). Cambridge University Press, Cambridge, 1992.Google Scholar
Yomdin, Y.. Volume growth and entropy. Israel J. Math. 57(3) (1987), 285300.Google Scholar