Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-15T06:23:06.510Z Has data issue: false hasContentIssue false

Entropy for extensions of Bernoulli shifts

Published online by Cambridge University Press:  14 October 2010

Marie Choda
Affiliation:
Department of Mathematics, Osaka Kyoiku University, Asahigaoka, Kashiwara 582, Japan

Abstract

We give a condition for automorphisms α and β on finite von Neumann algebras which induces the tensor product formula for entropies: H(α ⊗ β) = H(α) + H(β). As an application, the Bernoulli shift (1/n, 1/n, …, 1/n) has extensions to ergodic outer automorphisms {αk; k = 1,2, …} on the hyperfinite II1 factor R with the entropies Hk) = (1/2)kn log n.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Besson, O.. On the entropy in II1 von Neumann algebras. Ergod. Th. & Dynam. Sys. 1 (1981), 419429.CrossRefGoogle Scholar
[2] Bures, D. and Yin, H.-S.. Shifts on the hyperfinite factor of II1. J. Operator Theory 20 (1988), 91106.Google Scholar
[3] Choda, M.. Shifts on the hyperfinite II1 factor. J. Operator Theory 17 (1987), 223235.Google Scholar
[4] Choda, M.. Entropy for *-endomorphisms and relative entropy for subalgebras. J. Operator Theory 25 (1991), 125140.Google Scholar
[5] Choda, M.. Entropy for canonical shifts. Trans. Amer. Math. Soc. 334 (1992), 827849.CrossRefGoogle Scholar
[6] Choda, M. and Hiai, F.. Entropy for canonical shifts II. Publ. RIMS. Kyoto Univ. 27 (1991), 461489.Google Scholar
[7] Choda, M.. Conjugate but not inner conjugate subfactors. Proc. Amer. Math. Soc. 124 (1996), 147153.CrossRefGoogle Scholar
[8] Connes, A. and Størmer, E.. Entropy for automorphisms of von Neumann algebras. Ada Math. 134 (1975), 188306.Google Scholar
[9] Connes, A. and Størmer, E.. A connection between the classical and the quantum mechanical entropy. Operator Algebras and Group Representations (Monographs and Studies in Mathematics 17). Pitman, 1984, pp. 113123.Google Scholar
[10] Connes, A., Narnhofer, H. and Thirring, W.. Dynamical entropy of von Neumann algebras. Commun. Math. Phys. 112 (1987), 691719.Google Scholar
[11] Connes, A., Feldman, J. and Weiss, B.. An amenable equivalence relation is generated by a single transformation. Ergod. Th. & Dynam. Sys. 1 (1981), 431450.CrossRefGoogle Scholar
[12] Enomoto, M., Choda, M. and Watatani, Y.. Generalized Powers' binary shifts on the hyperfinite II1 factor. Math. Japonica 33 (1988), 831843.Google Scholar
[13] Jones, V. F. R.. Index for subfactors. Invent. Math. 72 (1983), 125.CrossRefGoogle Scholar
[14] Narnhofer, H., Størmer, E. and Thirring, W.. C*-dynamical systems for which the tensor product formula for entropy fails. Ergod. Th. & Dynam. Sys. 15 (1995), 961968.Google Scholar
[15] Pimsner, M. and Popa, S.. Entropy and index for subfactors. Ann. Sci. Ecole Norm. Sup. 19 (1986), 57106.Google Scholar
[16] Popa, S.. Notes on Cartan subalgebras in type II1 factors. Math. Scand. 57 (1985), 171188.Google Scholar
[17] Powers, R. T.. An index theory for semigroups of *-endomorphisms of B(H) and type II1 factors. Canad. J. Math. 40 (1988), 86114.CrossRefGoogle Scholar
[18] Price, G. L.. Shifts of integer index on the hyperfinite II1 factor. Pacific J. Math. 132 (1988), 379390.CrossRefGoogle Scholar
[19] Størmer, E., Voiculescu, D.. Entropy of Bogoliubov automorphisms of the canonical anticommutation relations. Commun. Math. Phys. 133 (1990), 521542.Google Scholar
[20] Størmer, E.. Entropy of some inner automorphisms of the hyperfinite II1 factor. Inter. J. Math. 4 (1993), 319322.Google Scholar
[21] Voiclescu, D.. Dynamical approximation entropies and topological entropy in operator algebras. Commun. Math. Phys. 170 (1995), 249281.CrossRefGoogle Scholar