Published online by Cambridge University Press: 21 July 2015
We give conditions on the subgroups of the circle to be realized as the subgroups of eigenvalues of minimal Cantor systems belonging to a determined strong orbit equivalence class. Actually, the additive group of continuous eigenvalues $E(X,T)$ of the minimal Cantor system $(X,T)$ is a subgroup of the intersection $I(X,T)$ of all the images of the dimension group by its traces. We show, whenever the infinitesimal subgroup of the dimension group associated with $(X,T)$ is trivial, the quotient group $I(X,T)/E(X,T)$ is torsion free. We give examples with non-trivial infinitesimal subgroups where this property fails. We also provide some realization results.