Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-28T11:06:49.507Z Has data issue: false hasContentIssue false

Cyclicity of period annuli and principalization of Bautin ideals

Published online by Cambridge University Press:  01 October 2008

LUBOMIR GAVRILOV*
Affiliation:
Institut de Mathématiques de Toulouse, UMR 5219, Université Paul-Sabatier (Toulouse III), 31062 Toulouse, Cedex 9, France (email: [email protected])

Abstract

Let Π be an open period annulus of a plane analytic vector field X0. We prove that the maximal number of limit cycles which bifurcate from Π under a given multi-parameter analytic deformation Xλ of X0 is the same as in an appropriate one-parameter analytic deformation Xλ(ε), provided that this cyclicity is finite. Along the same lines, we also give a bound for the cyclicity of homoclinic saddle loops.

Type
Research Article
Copyright
Copyright © 2008 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Arnold, V. I.. Arnold’s Problems. Springer, Berlin, 2004.Google Scholar
[2]Bierstone, E. and Milman, P. D.. Uniformization of analytic spaces. J. Amer. Math. Soc. 2(4) (1989), 801836.CrossRefGoogle Scholar
[3]Caubergh, M.. Configurations of zeros of analytic functions. C. R. Acad. Sci. Paris 333(1) (2001), 307312.CrossRefGoogle Scholar
[4]Caubergh, M. and Dumortier, F.. Algebraic curves of maximal cyclicity. Math. Proc. Cambridge Philos. Soc. 140 (2006), 4770.CrossRefGoogle Scholar
[5]Chow, S.-N., Li, C. and Yi, Y.. The cyclicity of period annuli of degenerate quadratic Hamiltonian systems with elliptic segment loop. Ergod. Th. & Dynam. Sys. 22 (2002), 349374.CrossRefGoogle Scholar
[6]Dumortier, F. and Roussarie, R.. Abelian integrals and limit cycles. J. Differential Equations 227(1) (2006), 116165.CrossRefGoogle Scholar
[7]Françoise, J.-P. and Pugh, C. C.. Keeping track of limit cycles. J. Differential Equations 65 (1986), 139157.CrossRefGoogle Scholar
[8]Françoise, J.-P.. On the bifurcation of periodic orbits. Comput. Appl. Math. 20(1–2) (2001), 91119 (special issue honouring M. M. Peixoto).Google Scholar
[9]Gavrilov, L. and Iliev, I. D.. The displacement map associated to polynomial unfoldings of planar Hamiltonian vector fields. Amer. J. Math. 127 (2005), 11531190.CrossRefGoogle Scholar
[10]Gavrilov, L.. Higher order Poincare–Pontryagin functions and iterated path integrals. Ann. Fac. Sci. Toulouse Math. (6) 14(4) (2005), 663682.CrossRefGoogle Scholar
[11]Gavrilov, L.. The infinitesimal 16th Hilbert problem in the quadratic case. Invent. Math. 143 (2001), 449497.CrossRefGoogle Scholar
[12]Gunning, R. and Rossi, H.. Analytic Functions of Several Complex Variables. Prentice-Hall, Englewood Cliffs, NJ, 1965.Google Scholar
[13]Hironaka, H.. Ann. of Math. (2) 79 (1964), 109203; Ann. of Math. (2) 79 (1964), 205–326.CrossRefGoogle Scholar
[14]Aroca, J. M., Hironaka, H. and Vicente, J. L.. Desingularization Theorems. Consejo Sup. Inv. Cient., Madrid, 1977.Google Scholar
[15]Horozov, E. and Iliev, I. D.. On the number of limit cycles in perturbations of quadratic hamiltonian systems. Proc. London Math. Soc. (3) 69 (1994), 198224.CrossRefGoogle Scholar
[16]Iliev, I. D.. Perturbations of quadratic centers. Bull. Sci. Math. 122(2) (1998), 107161.CrossRefGoogle Scholar
[17]Il’yashenko, Yu.. Appearance of limit cycles in perturbation of the equation dw/dz=−R z/R w where R(z,w) is a polynomial. USSR Math. Sbornik 78 (1969), 360373 (in Russian).Google Scholar
[18]Khovanskii, A. G.. Real analytic manifolds with the property of finiteness, and complex abelian integrals. Funktsional. Anal. i Prilozhen. 18(2) (1984), 4050.CrossRefGoogle Scholar
[19]Milnor, J.. Singular Points of Complex Hypersurfaces (Annals of Mathematics Studies, 61). Princeton University Press, Princeton, NJ, 1968.Google Scholar
[20]Roussarie, R.. Melnikov functions and Bautin ideal. Qual. Theory Dyn. Syst. 2(1) (2001), 6778.CrossRefGoogle Scholar
[21]Roussarie, R.. Bifurcation of Planar Vector Fields and Hilbert’s Sixteenth Problem (Progress in Mathematics, 164). Birkhäuser, Basel, 1998.Google Scholar
[22]Roussarie, R.. Cyclicité finie des lacets et des points cuspidaux. Nonlinearity 2(1) (1989), 73117.CrossRefGoogle Scholar
[23]Roussarie, R.. On the number of limit cycles which appear by perturbation of a separatrix loop of planar vector fields. Bol. Soc. Bras. Mat. 17 (1986), 67110.CrossRefGoogle Scholar
[24]Varchenko, A. N.. Estimation of the number of zeros of an abelian integral depending on a parameter, and limit cycles. Funktsional. Anal. i Prilozhen. 18(2) (1984), 1425.CrossRefGoogle Scholar
[25]Łojasiewicz, S., Tougeron, J.-Cl. and Zurro, M.-A.. Eclatement des coefficients des séries entières et deux théorèmes de Gabrielov. Manuscripta Math. 92(3) (1997), 325337.CrossRefGoogle Scholar