Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-24T16:55:05.535Z Has data issue: false hasContentIssue false

Corrections to ‘Discrete Lyapunov exponents and Hausdorff dimension’ 20 (2000), 145–172

Published online by Cambridge University Press:  10 November 2000

SHMUEL FRIEDLAND
Affiliation:
The University of Illinois at Chicago, Department of Mathematics, Statistics and Computer Science, 851 S. Morgan Street, Chicago, Illinois 60607-7045, USA (e-mail: [email protected])

Abstract

The function $d$ defined in (0.3) may not be a metric unless \begin{equation} \phi_p(a_1,\dots, a_p)\le \phi_{p+1} (a_1,\dots, a_{p+1}),\quad \text{for all } (a_i)^{p+1}_1 \in \Gamma^{p+1},\ p=1,\dots.\tag{A} \end{equation} Let $$ \tilde\phi_p(a_1,\dots, a_p)=\max_{1\le i\le p}\phi_1 (a_1,\dots, a_i),\quad (a_i)^p_1\in\Gamma^p,\ p=1,\dots. $$ Then $\tilde\phi$ satisfies (A) and (0.1). Note that \begin{equation} \phi_p(a_1,\dots, a_p) \le\tilde\phi_p (a_1,\dots, a_p)\le p \max_{1\le i\le n} \phi_1(a_i).\tag{B} \end{equation} In (0.3) replace the equality $d(a,b)=e^{-\phi_p(a_1,\dots,a_p)}$ by $d(a,b)=e^{-\tilde\phi_p(a_1,\dots,a_p)}$. Then $d(a,b)\le \max(d(a,c), d(c,b))$. Let \begin{gather*} \tilde\psi_p(x):=\max_{1\le i\le p} \psi_i(x),\ x\in\Gamma^\infty,\quad \tilde\alpha_p(\mu) :=\int \tilde\psi_p\,d\mu,\ p=1, \dots\\ \tilde\alpha(\mu) :=\lim_{p\rightarrow\infty} \frac{\tilde\alpha_p(\mu)}{p}. \end{gather*} Then (B) yields $$ \lim_{p\rightarrow\infty} \frac{\psi_p(x)}{p} = s\Rightarrow \lim_{p\rightarrow\infty} \frac{\tilde\psi_p(x)}{p}=s. $$

Type
Correction
Copyright
© 2000 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)