Article contents
Continuous orbit equivalence of topological Markov shifts and dynamical zeta functions
Published online by Cambridge University Press: 06 February 2015
Abstract
For continuously orbit equivalent one-sided topological Markov shifts $(X_{A},{\it\sigma}_{A})$ and $(X_{B},{\it\sigma}_{B})$, their eventually periodic points and cocycle functions are studied. As a result, we directly construct an isomorphism between their ordered cohomology groups $(\bar{H}^{A},\bar{H}_{+}^{A})$ and $(\bar{H}^{B},\bar{H}_{+}^{B})$. We also show that the cocycle functions for the continuous orbit equivalences give rise to positive elements of their ordered cohomology groups, so that the zeta functions of continuously orbit equivalent topological Markov shifts are related. The set of Borel measures is shown to be invariant under continuous orbit equivalence of one-sided topological Markov shifts.
- Type
- Research Article
- Information
- Copyright
- © Cambridge University Press, 2014
References
- 8
- Cited by