Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-25T16:02:23.755Z Has data issue: false hasContentIssue false

Cascades in the dynamics of affine interval exchange transformations

Published online by Cambridge University Press:  29 January 2019

ADRIEN BOULANGER
Affiliation:
Institut de Mathématiques de Marseille, Aix-Marseille Université, Campus de Luminy, 13453 Marseille Cedex 13, France
CHARLES FOUGERON
Affiliation:
Max Planck Institute for Mathematics, Vivatsgasse 7, 53111 Bonn, Germany
SELIM GHAZOUANI
Affiliation:
Mathematics Institute, Zeeman Building, University of Warwick, Coventry CV4 7AL, UK email [email protected]

Abstract

We describe in this article the dynamics of a one-parameter family of affine interval exchange transformations. This amounts to studying the directional foliations of a particular dilatation surface introduced in Duryev et al [Affine surfaces and their Veech groups. Preprint, 2016, arXiv:1609.02130], the Disco surface. We show that this family displays various dynamical behaviours: it is generically dynamically trivial but for a Cantor set of parameters the leaves of the foliations accumulate to a (transversely) Cantor set. This study is achieved through analysis of the dynamics of the Veech group of this surface combined with a modified version of Rauzy induction in the context of affine interval exchange transformations.

Type
Original Article
Copyright
© Cambridge University Press, 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahlfors, L. V.. Fundamental polyhedrons and limit point sets of Kleinian groups. Proc. Natl. Acad. Sci. USA 55 (1966), 251254.CrossRefGoogle ScholarPubMed
Bressaud, X., Hubert, P. and Maass, A.. Persistence of wandering intervals in self-similar affine interval exchange transformations. Ergod. Th. & Dynam. Sys. 30(3) (2010), 665686.CrossRefGoogle Scholar
Camelier, R. and Gutierrez, C.. Affine interval exchange transformations with wandering intervals. Ergod. Th. & Dynam. Sys. 17(6) (1997), 13151338.CrossRefGoogle Scholar
Cobo, M.. Piece-wise affine maps conjugate to interval exchanges. Ergod. Th. & Dynam. Sys. 22(2) (2002), 375407.CrossRefGoogle Scholar
Dal’Bo, F.. Geodesic and Horocyclic Trajectories, 1st edn. Universitext, Springer, London, 2011.CrossRefGoogle Scholar
Duryev, E., Fougeroc, C. and Ghazouani, S.. Affine surfaces and their Veech groups. Preprint, 2016,arXiv:1609.02130.Google Scholar
Herman, M.-R.. Mesure de Lebesgue et nombre de rotation (Lecture Notes in Mathematics, 597). Springer, Berlin, 1977, pp. 271293.Google Scholar
Katok, S.. Fuchsian Groups (Chicago Lectures in Mathematics Series), 1st edn. University of Chicago Press, Chicago, IL, 1992.Google Scholar
Levitt, G.. Feuilletages des surfaces. Ann. Inst. Fourier (Grenoble) 32(2x) (1982), 179217.CrossRefGoogle Scholar
Liousse, I.. Dynamique générique des feuilletages transversalement affines des surfaces. Bull. Soc. Math. France 123(4) (1995), 493516.CrossRefGoogle Scholar
Marmi, S., Moussa, P. and Yoccoz, J.-C.. Affine interval exchange maps with a wandering interval. Proc. Lond. Math. Soc. (3) 100(3) (2010), 639669.CrossRefGoogle Scholar
Peixoto, M. M.. On structural stability. Ann. of Math. (2) 69 (1959), 199222.CrossRefGoogle Scholar
Peixoto, M. M.. Structural stability on two-dimensional manifolds. Topology 1 (1962), 101120.CrossRefGoogle Scholar
Rauzy, G.. Échanges d’intervalles et transformations induites. Acta Arith. 34(4) (1979), 315328.CrossRefGoogle Scholar
Thurston, W. P.. On the geometry and dynamics of diffeomorphisms of surfaces. Bull. Amer. Math. Soc. (N.S.) 19(2) (1988), 417431.CrossRefGoogle Scholar