Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-16T21:16:37.902Z Has data issue: false hasContentIssue false

Carrots for dessert

Published online by Cambridge University Press:  17 November 2011

CARSTEN LUNDE PETERSEN
Affiliation:
IMFUFA, Roskilde University, Postbox 260, DK-4000 Roskilde, Denmark (email: [email protected])
PASCALE ROESCH
Affiliation:
Institut de Mathématiques de Toulouse, Université Paul Sabatier, F-31062 Toulouse Cedex 9, France (email: [email protected])

Abstract

We formulate and prove a precise statement of asymptotic shrinking of ‘carrot-fields’ around the Mandelbrot set M. This phenomenon was suggested in a seminal text on polynomial-like mappings by Douady and Hubbard [On the dynamics of polynomial-like mappings. Ann. Sci. Éc. Norm. Supér. t.18 (1985), 287–343]. This is helpful for understanding how copies of M sit in the bifurcation loci of families of rational maps.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[DH1]Douady, A. and Hubbard, J. H.. Etude dynamique des polynômes complexes. Publications mathématiques d’Orsay, 1984.Google Scholar
[DH2]Douady, A. and Hubbard, J. H.. On the dynamics of polynomial-like mappings. Ann. Sci. Éc. Norm. Supér. t.18 (1985), 287343.CrossRefGoogle Scholar
[Du]Dudko, D.. The Decoration Theorem for Mandelbrot and Multibrot sets, manuscript. arXiv:1004.0633v1.Google Scholar
[Ha]Haïssinsky, P.. Chirurgie parabolique. C. R. Acad. Sci. Paris Sér. I Math. 327 (1998), 195198.CrossRefGoogle Scholar
[Hu]Hubbard, J. H.. Local connectivity of Julia sets and bifurcation loci: three theorems of J. C. Yoccoz. Topological Methods in Modern Mathematics. Eds. Goldberg, and Phillips, . Publish or Perish, Houston, TX, 1993, pp. 467511.Google Scholar
[L]Levin, G. M.. Disconnected Julia set and rotation sets. Ann. Sci. Éc. Norm. Supér. t.29 (1996), 122.Google Scholar
[Mi]Milnor, J. W.. Periodic orbits, externals rays and the Mandelbrot set: an expository account. Géométrie complexe et systèmes dynamiques (Orsay, 1995). Astérisque (261) (2000), 277333 xiii.Google Scholar
[McM]McMullen, C. T.. The Mandelbrot set is universal. The Mandelbrot Set, Theme and Variations (London Mathematical Society Lecture Note Series, 274). Ed. Lei, Tan. Cambridge University Press, Cambridge, 2000.Google Scholar
[P]Petersen, C. L.. On the Pommerenke–Levin–Yoccoz inequality. Ergod. Th. & Dynam. Syst. 13 (1993), 785806.Google Scholar
[PR1]Petersen, C. L. and Roesch, P.. Parabolic tools. J. Difference Equ. Appl. 16(05-06) (2010), 715738.CrossRefGoogle Scholar
[PR2]Petersen, C. L. and Roesch, P.. The Yoccoz Combinatorial Analytic Invariant (Fields Institute Communications, 53). American Mathematical Society, 2008.CrossRefGoogle Scholar
[PR3]Petersen, C. L. and Roesch, P.. The Parabolic Mandelbrot set, manuscript.Google Scholar
[PR4]Petersen, C. L. and Roesch, P.. Carrots in Mandelbrot-like families, manuscript in preparation.Google Scholar
[Po]Pommerenke, C.. Boundary Behaviour of Conformal Maps. Springer, 1992.CrossRefGoogle Scholar
[R]Roesch, P.. Holomorphic motions and puzzles. The Mandelbrot Set, Theme and Variations (London Mathematical Society Lecture Note Series, 274). Ed. Lei, Tan. Cambridge University Press, 2000, pp. 117131.CrossRefGoogle Scholar