Published online by Cambridge University Press: 13 March 2018
We first consider the dynamics of a class of meromorphic skew products having superattracting fixed points or fixed indeterminacy points at the origin. Our theorem asserts that, if a map has a suitable weight, then it is conjugate to the associated monomial map on an invariant open set whose closure contains the origin. We next extend this result to a wider class of meromorphic maps such that the eigenvalues of the associated matrices are real and greater than $1$.