Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-12-01T00:06:47.775Z Has data issue: false hasContentIssue false

Analytic Lagrangian tori for the planetary many-body problem

Published online by Cambridge University Press:  01 June 2009

LUIGI CHIERCHIA
Affiliation:
Dipartimento di Matematica, Università ‘Roma Tre’, Largo S. L. Murialdo 1, I-00146 Roma, Italy (email: [email protected])
FABIO PUSATERI
Affiliation:
Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, NY 10012, USA (email: [email protected])

Abstract

In 2004, Féjoz [Démonstration du ‘théoréme d’Arnold’ sur la stabilité du système planétaire (d’après M. Herman). Ergod. Th. & Dynam. Sys.24(5) (2004), 1521–1582], completing investigations of Herman’s [Démonstration d’un théoréme de V.I. Arnold. Séminaire de Systémes Dynamiques et manuscripts, 1998], gave a complete proof of ‘Arnold’s Theorem’ [V. I. Arnol’d. Small denominators and problems of stability of motion in classical and celestial mechanics. Uspekhi Mat. Nauk. 18(6(114)) (1963), 91–192] on the planetary many-body problem, establishing, in particular, the existence of a positive measure set of smooth (C) Lagrangian invariant tori for the planetary many-body problem. Here, using Rüßmann’s 2001 KAM theory [H. Rüßmann. Invariant tori in non-degenerate nearly integrable Hamiltonian systems. R. & C. Dynamics2(6) (2001), 119–203], we prove the above result in the real-analytic class.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Arnol’d, V. I.. Small denominators and problems of stability of motion in classical and celestial mechanics. Uspekhi Mat. Nauk. 18(6 (114)) (1963), 91192.Google Scholar
[2] V. I. Arnol’d, V. V. Kozlov and A. I. Neishtadt (eds). Mathematical Aspects of Classical and Celestial Mechanics, 3rd edition(Encyclopaedia of Mathematical Sciences, 3). Springer, Berlin, 2006.Google Scholar
[3]Biasco, L., Chierchia, L. and Valdinoci, E.. Elliptic two-dimensional invariant tori for the planetary three-body problem. Arch. Ration. Mech. Anal. 170 (2003), 91135.CrossRefGoogle Scholar
[4]Boigey, F.. Élimination des nòe uds dans le problème newtonien des quatre corps. Celestial Mech. 27(4) (1982), 399414.Google Scholar
[5]Broer, H. and Takens, F.. Unicity of Kam tori. Ergod. Th. & Dynam. Sys. 27 (2007), 713724.Google Scholar
[6]Celletti, A. and Chierchia, L.. Kam stability and celestial mechanics. Mem. Amer. Math. Soc. 187(878) (2007), 134.Google Scholar
[7]Deprit, A.. Elimination of the nodes in problems of n bodies. Celestial Mech. 30(2) (1983), 181195.Google Scholar
[8]Fathi, A., Giuliani, A. and Sorrentino, A.. Uniqueness of invariant Lagrangian graphs in a homology or a cohomology class, 2008. Preprint. Available at http://arxiv.org/PS_cache/arxiv/pdf/0801/0801.3568v1.pdf.Google Scholar
[9]Féjoz, J.. Démonstration du ‘théoréme d’Arnold’ sur la stabilité du système planétaire (d’après M. Herman). Ergod. Th. & Dynam. Sys. 24(5) (2004), 15211582.CrossRefGoogle Scholar
[10]Féjoz, J.. Version révisée de l’article paru dans le Michael Herman Memorial Issue. Ergod. Th. & Dynam. Sys. 24(5) (2004), 15211582.Google Scholar
[11]Herman, M. R.. Démonstration d’un théoréme de V.I. Arnold. Séminaire de Systémes Dynamiques et manuscripts, Université D. Diderot, Paris 7, 1998.Google Scholar
[12]Hofer, H. and Zehnder, E.. Symplectic Invariants and Hamiltonian Dynamics. Birkhäuser, Basel, 1994.CrossRefGoogle Scholar
[13]Laskar, J.. Analytical framework in Poincaré variables for the motion of the solar system. Predictability, Stability and Chaos in n-Body Dynamical Systems (Nato Adv. Sci. Inst. Ser. B Phys., 272). Plenum, New York, 1991, pp. 93114.CrossRefGoogle Scholar
[14]Poincaré, H.. Leçons de mécanique céleste. Gauthier-Villars, Paris, 1905 (Vol. 1); 1907 (Vol. 2); 1910 (Vol. 3); 2005 (Reprint).Google Scholar
[15]Pusateri, F.. Analytic KAM tori for the planetary (n+1)-body problem. Master’s Thesis, Università degli Studi Roma Tre, 2006. http://www.mat.uniroma3.it/users/chierchia/TESI.Google Scholar
[16]Pyartli, A. S.. Diophantine approximations on Euclidean submanifolds. Functional. Anal. Appl. 3 (1969), 303306.Google Scholar
[17]Robutel, P.. Stability of the planetary three-body problem II. KAM theory and existence of quasi-periodic motions. Celestial Mech. Dynam. Astronom. 62(3) (1995), 219261.CrossRefGoogle Scholar
[18]Rüßmann, H.. Invariant tori in non-degenerate nearly integrable Hamiltonian systems. R. & C. Dynamics 2(6) (2001), 119203.Google Scholar
[19]Salamon, D.. The Kolmogorov–Arnold–Moser theorem. Math. Phys. Electron. J. 3(37) (2004), (electronic).Google Scholar
[20]Sevryuk, M. B.. The classical KAM theory and the dawn of the twenty-first century. Mosc. Math. J. 3(3) (2003), 11131144.Google Scholar