Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-26T00:29:20.728Z Has data issue: false hasContentIssue false

An index for Brouwer homeomorphisms and homotopy Brouwer theory

Published online by Cambridge University Press:  06 October 2015

FRÉDÉRIC LE ROUX*
Affiliation:
Université Pierre et Marie Curie, Institut de Mathématiques de Jussieu – Paris rive gauche, 4, Place Jussieu, Case 247, Paris, 75252, France email [email protected]

Abstract

We use the homotopy Brouwer theory of Handel to define a Poincaré index between pairs of orbits for an orientation-preserving fixed-point-free homeomorphism of the plane. Furthermore, we prove that this index is almost additive.

Type
Research Article
Copyright
© Cambridge University Press, 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alexander, J. W.. On the deformation of an n cell. Proc. Natl. Acad. Sci. USA 9(12) (1923), 406.CrossRefGoogle ScholarPubMed
Béguin, F. and Le Roux, F.. Ensemble oscillant d’un homéomorphisme de Brouwer, homéomorphismes de Reeb. Bull. Soc. Math. France 131(2) (2003), 149210.Google Scholar
Brouwer, L. E. J.. Beweis des ebenen translationssatzes. Math. Ann. 72(1) (1912), 3754.CrossRefGoogle Scholar
Franks, J. and Handel, M.. Periodic points of Hamiltonian surface diffeomorphisms. Geom. Topol. 7(2) (2003), 713756.CrossRefGoogle Scholar
Franks, J. and Handel, M.. Entropy zero area preserving diffeomorphisms of S2. Geom. Topol. 16(4) (2012), 21872284.CrossRefGoogle Scholar
Guillou, L.. Théorème de translation plane de Brouwer et généralisations du théorème de Poincaré–Birkhoff. Topology 33 (1994), 331351.CrossRefGoogle Scholar
Hamstrom, M.-E.. Homotopy groups of the space of homeomorphisms on a 2-manifold. Illinois J. Math. 10(340) (1966), 563573.CrossRefGoogle Scholar
Handel, M.. A fixed-point theorem for planar homeomorphisms. Topology 38(2) (1999), 235264.CrossRefGoogle Scholar
Homma, T.. An extension of the Jordan curve theorem. Yokohama Math. J. 1 (1953), 125129.Google Scholar
Homma, T. and Terasaka, H.. On the structure of the plane translation of Brouwer. Osaka J. Math. 5(2) (1953), 233266.Google Scholar
Katok, S.. Fuchsian Groups. University of Chicago Press, Chicago, IL, 1992.Google Scholar
Le Calvez, P.. Une version feuilletée du théorème de translation de Brouwer. Comment. Math. Helv. 79(2) (2004), 229259.CrossRefGoogle Scholar
Le Roux, F.. Il n’y a pas de classification borélienne des homéomorphismes de Brouwer. Ergod. Th. & Dynam. Sys. 21(01) (2001), 233247.CrossRefGoogle Scholar
Le Roux, F.. Structure des homéomorphismes de Brouwer. Geom. Topol. 9 (2005), 16891774.CrossRefGoogle Scholar
Le Roux, F.. An introduction to Handel’s homotopy Brouwer theory. Preprint, 2012, arXiv:1208.0985.Google Scholar
Matsumoto, S.. Arnold conjecture for surface homeomorphisms. Topol. Appl. 104(1–3) (2000), 191214.CrossRefGoogle Scholar