No CrossRef data available.
Article contents
Alpha-congruence for dispersive billiards
Published online by Cambridge University Press: 19 September 2008
Abstract
We show the stability in the sense of α-congruence of dispersive (Sinai) planar billiards that are Bernoulli flows. The perturbations are either billiards on slightly altered tables or geodesic flows on nearby manifolds.
- Type
- Research Article
- Information
- Copyright
- Copyright © Cambridge University Press 1991
References
REFERENCES
[AA]Arnold, V. I. & Avez, A.. Ergodic Problems of Classical Mechanics W. A. Benjamin (1968).Google Scholar
[BS]Bunimovich, L. A. & Sinai, Ya. G.. On a fundamental theorem in the theory of dispersive billiards. Math. USSR Sb. 19 (1973), 407–424.Google Scholar
[BSt]Bennetin, G. & Strelcyn, J-M.. Numerical experiments on the free motion of a point mass moving in a plane convex region: Stochastic transition and entropy. Phys. Rev. A 17 (1978), 773–785.Google Scholar
[Eb]Eberlein, P.. When is a geodesic flow of Anosov type I? J. Diff. Geom. 8 (1973), 437–463.Google Scholar
[El]Eloranta, K.. Alpha-congruence for Markov processes. Ann. Prob. 18(4) (1990), 1583–1601.CrossRefGoogle Scholar
[GO]Gallavotti, G. & Ornstein, D. S.. The billiard flow with a convex scatterer is Bernoulli. Comm. Math. Phys. 38 (1974), 83–101.CrossRefGoogle Scholar
[Ke]Keller, G.. Ergodizität und K-eigenshaft der Kollisions Transformation beim Sinai-Billiard mil Endlichem Horizont, Thesis, Mathematische Institut, University of Erlangen (1977).Google Scholar
[KS]Katok, A. & Strelcyn, J-M.. Invariant manifolds, entropy and billiards: Smooth maps with singularities. Lecture Notes in Mathematics 1222, Springer (1986).Google Scholar
[M]Manning, A.. Curvature bounds for the entropy of the geodesic flow on a surface. J. London Math. Soc. (2), 24 (1981), 351–7.Google Scholar
[OW]Ornstein, D. S. & Weiss, B.. Statistical properties of chaotic systems. Bull. Amer. Math. Soc. 24 (1) (1991), 11–16.CrossRefGoogle Scholar
[P]Pesin, Ya. B.. Characteristic Lyapunov exponents and smooth ergodic theory. Russian Math. Surveys 32(4) (1977), 55–114.CrossRefGoogle Scholar
[S1]Sinai, Ya. G.. Dynamical systems with elastic reflections. Russian Math. Surveys 25(2) (1970), 137–189.Google Scholar
[S2]Sinai, Ya. G.. Classical dynamical systems with countable Lebesque spectrum II. Amer. Math. Soc. Transl. (2) 68 (1968), 34–88.Google Scholar
[Sp]Spivak, M.. A Comprehensive Introduction to Differential Geometry, Vol. 3, Publish or Perish (1979).Google Scholar
[W]Wojtkowski, M.. Principles for the design of billiards with nonvanishing Lyapunov exponents. Comm. Math. Phys. 105 (1986), 391–414.Google Scholar