Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-24T14:56:18.093Z Has data issue: false hasContentIssue false

Accessible saddles on fractal basin boundaries

Published online by Cambridge University Press:  19 September 2008

Kathleen T. Alligood
Affiliation:
Department of Mathematics, George Mason University, Fairfax, VA 22030, USA
James A. Yorke
Affiliation:
Department of Mathematics and Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742, USA

Abstract

For a homeomorphism of the plane, the basin of attraction of a fixed point attractor is open, connected, and simply-connected, and hence is homeomorphic to an open disk. The basin boundary, however, need not be homeomorphic to a circle. When it is not, it can contain periodic orbits of infinitely many different periods.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[AS]Alligood, K. & Sauer, T.. Rotation numbers of periodic orbits in the Hénon map. Commun. Math. Phys. 120 (1988), 105119.CrossRefGoogle Scholar
[ATY]Alligood, K., Tedeschini-Lalli, L. & Yorke, J.. Metamorphoses: sudden jumps in basin boundaries. Commun. Math. Phys. 141 (1991), 18.CrossRefGoogle Scholar
[B]Birkhoff, G. D.. Sur quelques courbes fermées remarquables. Bull. Soc Math. France 60 (1932), 126.Google Scholar
[BS]Bhatia, N. P. & Szegö, G. P.. Stability Theory of Dynamical Systems. Springer-Verlag: Heidelberg, 1970.CrossRefGoogle Scholar
[C]Carathéodory, C.. Uber die Begrenzung einfach zusammenhangender Gebiete. Math. Ann. 73 (1913), 323370.CrossRefGoogle Scholar
[C-L1]Cartwright, M. L. & Littlewood, J. E.. Some fixed point theorems. Ann. Math. 54 (1951), 137.CrossRefGoogle Scholar
[C-Lo]Collingwood, E. F. & Lohwater, A. J.. Theory of Cluster Sets. Cambridge Tracts in Mathematics and Mathematical Physics, No. 56. Cambridge University Press: Cambridge, 1966.Google Scholar
[D]Devaney, R. L.. An Introduction to Chaotic Dynamical Systems. Benjamin/Cummings Publishing Co.: Menlo Park, 1986.Google Scholar
[Do]Dold, A.. Lectures on Algebraic Topology. Springer-Verlag: Heidelberg, 1972.Google Scholar
[GOYa]Grebogi, C., Ott, E. & Yorke, J.Basin boundary metamorphoses: changes in accessible boundary orbits. Physica 24D (1987), 243262.Google Scholar
[GOYb]Grebogi, C., Ott, E. & Yorke, J.. Critical exponent of chaotic transients in nonlinear dynamical systems. Phys. Rev. Lett. 57 (1986)CrossRefGoogle ScholarPubMed
[HJ]Hammel, S. & Jones, C.. Jumping stable manifolds for dissipative maps of the plane. Physica 35D (1989), 87106.Google Scholar
[L]Levinson, N.. A second order differential equation with singular solutions. Ann. Math. 50 (1947), 127153.Google Scholar
[M1]Mather, J.. Topological proofs of some purely topological consequences of Caratheodory's theory of prime ends. Rassias, Th. M. & Rassias, G. M., eds. Selected Studies. North-Holland: Amsterdam, 1982, pp 225255.Google Scholar
[M2]Mather, J.. Area preserving twist homeomorphisms of the annulus. Comment. Math. Helv. 54 (1979), 397404.CrossRefGoogle Scholar
[M3]Mather, J.. Invariant subsets for area-preserving homeomorphisms of surfaces. Adv. Math. Suppl Studies 7B (1981).Google Scholar
[Y]Yorke, J. A.. Dynamics, a Program for IBM-PC Clones. 1990. (Available from J. A. Yorke.)Google Scholar