Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2025-01-05T17:05:48.108Z Has data issue: false hasContentIssue false

Psychiatric genetics: recent advances and clinical implications

Published online by Cambridge University Press:  11 October 2011

Alejandro Corsico*
Affiliation:
Social Genetic and Developmental Psychiatry (SGDP) Research Centre, Institute of Psychiatry, London, UK
Peter McGuffin
Affiliation:
Social Genetic and Developmental Psychiatry (SGDP) Research Centre, Institute of Psychiatry, London, UK
*
Indirizzo per la corrispondenza: Dr. A. Corsico, SGDP Research Centre, Institute of Psychiatry, De Crespigny Park, Denmark Hill, London SE5 8AF (UK). Fax: +44-020-7848-0866 E-mail: [email protected][email protected]

Summary

Objective – To present an overview on current progress and future directions in psychiatric genetics. Methods — The review of studies that have demonstrated a genetic contribution to a wide range of psychopathology using family, twin, adoption studies and exploration of the methods and limitations of molecular genetic studies. Results – Single gene disorders has been the area that is most straightforward with striking advances in disorders such as Huntington Disease and early onset familial Alzheimer disease. Complex phenotypes such as schizophrenia and affective disorder have presented greater difficulties but late onset Alzheimer disease and dyslexia are examples where replicated molecular genetic findings suggest that gene identification is feasible even for multifactorial disorders. Conclusion – The combination of increasingly complete information on the genome together with accessibility to this on the internet provide the essential tools for the search for susceptibility genes. Another essential requirement in trying to identify genes of small effect is well characterized large scale collections of cases and this demands the interaction of epidemiological and clinical researchers. Advances in genomics will also allow tailoring of Pharmaceuticals pointing at treatment response and side effects. Hopefully all this perspectives together, will improve our understanding of the neurobiological pathogenesis of diseases such as Schizophrenia, Depression and Bipolar disorder ‘legitimizing’ them in the public view.

Riassunto

Scopo – Presentare una rassegna sui progressi attuali e sulle prospettive future della psichiatria genetica. Metodi – Revisione degli studi che hanno dimostrato una influenza genetica su un'ampia gamma di disturbi psicopatologici, utilizzando ricerche sulle famiglie, sui gemelli e sulle adozioni, ed approfondimento dei metodi e dei limiti degli studi di genetica molecolare. Risultati – I disturbi relativi ad un singolo gene hanno costituito il settore più semplice per ottenere significativi progressi nelle conoscenze su disturbi quali la malattia di Huntington e la malattia familiare di Alzheimer in fase iniziale. Fenotipi complessi, quali la schizofrenia e il disturbo affettivo, hanno invece presentato maggiori difficolta, ma la malattia di Alzheimer e la dislessia sono esempi nei quali scoperte replicate di genetica molecolare suggeriscono ora che l'identificazione genetica e realizzabile anche per disturbi multifattoriali. Conclusioni – La combinazione della disponibilita di un maggior numero di informazioni sui genoma, insieme all'accessibilita ad esse attraverso Internet, fornisce gli strumenti essenziali per le ricerche sulla predisposizione genetica. Un altro requisito fondamentale per tentare di identificare i geni che provocano piccoli effetti e una ben caratterizzata raccolta, su larga scala, di casi. Cid richiede l'interazione tra epidemiologi e clinici. I progressi negli studi di genetica consentiranno anche di individualizzare la terapia farmacologica, tenendo conto della risposta terapeutica e degli effetti collaterali. Si spera che l'insieme di queste prospettive migliorera le nostre conoscenze sulla patogenesi neurobiologica di malattie come la schizofrenia, la depressione ed il disturbo bipolare, ‘legittimando’ queste malattie agli occhi del grande pubblico.

Type
Invited Papers
Copyright
Copyright © Cambridge University Press 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ananz, M.J., Pons, J., Gutierrez, B., Mulcrone, J., Cairns, N., Makoff, A. & Kerwin, R. (2000). Investigation of 5-HT2A differential expression and imprinting in schizophrenia. American Journal of Medical Genetics 96(4), 391.Google Scholar
Bailey, A., Phillips, W. & Rutter, M. (1996). Autism: towards an integration of clinical, genetic, neuropsychological, and neurobiological perspectives. Journal of Child Psychology & Psychiatry & Allied Disciplines 37(1), 89126.CrossRefGoogle ScholarPubMed
Brunner, H.G., Nelen, M.R., van Zandvoort, P., Abeling, N.G., van Gen-nip, A.H., Wolters, E.C., Kuiper, M.A., Ropers, H.H. & van Oost, B.A. (1993). X-linked borderline mental retardation with prominent behavioural disturbance: phenotype, genetic localization and evidence for disturbed monoamine metabolism. American Journal of Human Genetics 52, 10321039.Google ScholarPubMed
Cadoret, R.J., Yates, W.R., Troughton, E., Woodworth, G. & Stewart, M.A. (1995). Genetic-environmental interaction in the genesis of aggressivity and conduct disorders. Archives General Psychiatry 52, 916924.CrossRefGoogle ScholarPubMed
Cardno, A. & McGuffm, P. (1999). Psychiatric Genetics. A Century of Psychiatry, Volume 2 (ed. Freeman, Hugh), pp. 343347. MosbyWolfe Medical Communications: London.Google Scholar
Cardno, A.G. & Gottesman, I.I. (2000). Twin studies of schizophrenia: From bow-and-arrow concordances to star wars mx and functional genomics. American Journal of Medicine Genetics 97(1), 1217.3.0.CO;2-U>CrossRefGoogle ScholarPubMed
Craddock, N. & Jones, I. (1999). Genetics of Bipolar disorder. Journal of Medical Genetics 36(8), 585594.CrossRefGoogle ScholarPubMed
Craddock, N., Khodel, V., van Eerdewegh, P. & Reich, T. (1995). Mathematical limits of multilocus models: the genetic transmission of bipolar disorder. American Journal of Human Genetics, 57(3), 690702.Google ScholarPubMed
Edwards, J.H. (1960). The simulation of Mendelism. Ada Genetica 10, 6370.Google ScholarPubMed
Gottesman, I.I. (1991). Schizophrenia Genesis. W H Freeman: New York.Google Scholar
Gottesman, I.I. & Shields, J. (1967). A polygenic theory of schizophrenia. Proceedings of the National Academy of Sciences of the United States of America 1, 199205.CrossRefGoogle Scholar
Kendler, K.S., Neale, M., Kessler, R., Heath, A. & Eaves, L. (1993). A twin study of recent life events and difficulties. Archives of General Psychiatry 50, 789796.CrossRefGoogle ScholarPubMed
Lyons, M.J., True, W.R., Eisen, A., Goldberg, J., Meyer, J.M., Faraone, S.V., Eaves, L.J. & Tsuang, M.T. (1995). Differential heritability of adult and juvenile antisocial traits. Archives of General Psychiatry 52, 906915.CrossRefGoogle ScholarPubMed
McClearn, G.E., Johansson, B., Berg, S., Pedersen, N.L., Ahern, F., Pe-trill, S.A. & Plomin, R. (1997). Substantial genetic influence on cognitive abilities in twins 80 or more years old. Science 276, 15601563.CrossRefGoogle ScholarPubMed
McGuffin, P. (1990). Models of the heritability and genetic transmission. In Search for the Causes of Schizophrenia, Vol II (ed. Haf-ner, H. and Gattaz, W.F.), pp. 109125. Springer: Berlin, Heidelberg.CrossRefGoogle Scholar
McGuffin, P. (2000). The quantitative and molecular genetics of human intelligence. In The Nature of Intelligence, Novartis Foundation Symposium 233, pp. 243259.CrossRefGoogle Scholar
McGuffin, P. & Gottesman, I.I. (1984). Genetic influences on normal and abnormal development. In Child Psychiatry (ed. Rutter, M. and Hersov, L.), pp. 1733. Blackwell: London.Google Scholar
McGuffin, P. & Huckle, P. (1990). Simulation of Mendelism revisted: the recessive gene for attending Medical School. American Journal of Human Genetics 46, 994999.Google Scholar
McGuffin, P., Katz, R., Rutherford, J. & Watkins, S. (1996). A hospital based twin register of the Heritability of DSM-IV Unipolar Depression. Archives of General Psychiatry 53, 129136.CrossRefGoogle ScholarPubMed
McGuffin, P., Riley, B. & Plomin, R. (2001). Toward behavioral genomics. Science 291, 12321251.CrossRefGoogle ScholarPubMed
Murphy, K.C., Jones, L.A. & Owen, M.J. (1999). High rates of schizophrenia in adults with velo-cardio-facial syndrome. Archive of Genetics Psychiatry 56, 940945.CrossRefGoogle ScholarPubMed
Neale, M.C. & Cardon, L.R. (1990). Methodology for Genetic Studies of Twins and Families. Kluwer Academic Publishers: Dordrecht.Google Scholar
Peltonen, L. & McKusick, V.A. (2001). Genomics and medicine – Dissecting human disease in the postgenomic era. Science 291(5507), 1224.CrossRefGoogle ScholarPubMed
Plomin, R., DeFries, J., McClearn, G. & McGuffin, P. (2001). Behavioral Genetics, 4th ed. Freeman: San Francisco.Google Scholar
Risch, N. (1990). Linkage strategies for genetically complex traits. Ill: the effect of marker polymorphism analysis on affected relative pairs. American Journal of Human Genetics 46, 242253.Google Scholar
Roses, A.D. (2000). Pharmacogenetics and future drug development and delivery. Lancet 355(9212), 13581361.CrossRefGoogle Scholar
Thapar, A. & McGuffin, P. (1995). Are anxiety symptoms in childhood heritable? Journal of Child Psychology and Psychiatry 36(3), 439447.CrossRefGoogle ScholarPubMed
Thapar, A. & McGuffin, P. (1997). Anxiety and depressive symptoms in childhood – a genetic study of comorbidity. Journal of Child Psychology and Psychiatry 38(6), 651656.CrossRefGoogle ScholarPubMed
Tienari, F. (1991). Gene-environment interaction in adoptive families. In Search for the Causes of Schizophrenia, Volume II (ed. Haf-ner, H. and Gattaz, W.F.), pp. 126143. Springer: Berlin, Heidelberg.Google Scholar
Tienari, P. J. & Wynne, L.C. (1994). Adoption studies of schizophrenia. Annals of Medicine 26, 233237.CrossRefGoogle ScholarPubMed
Verma, I.M. & Somia, N. (1997). Gene therapy: promises, problems and prospects. Nature 389, 239242.CrossRefGoogle Scholar