Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2025-01-05T15:33:10.242Z Has data issue: false hasContentIssue false

Interhemispheric communication in schizophrenia

Published online by Cambridge University Press:  11 April 2011

Marcella Bellani*
Affiliation:
Department of Medicine and Public Health, Section of Psychiatry and Clinical Psychology, University of Verona, Verona (Italy) Inter-University Centre of Behavioural Neurosciences (ICBN), University of Verona, Verona and University of Udine, Udine (Italy)
Carlo Alberto Marzi
Affiliation:
Department of Neurological and Visual Sciences, University of Verona and National Institute of Neuroscience, Verona (Italy)
Paolo Brambilla
Affiliation:
Inter-University Centre of Behavioural Neurosciences (ICBN), University of Verona, Verona and University of Udine, Udine (Italy) Section of Psychiatry, Department of Pathology and Experimental & Clinical Medicine, University of Udine, Udine (Italy) Scientific Institute ‘E. Medea’, Udine (Italy) CERT-BD, Department of Psychiatry, University of North Carolina, (USA)
*
Address for correspondence Dr. M. Bellani, Department of Medicine and Public Health, Section of Psychiatry and Clinical Psychology, University of Verona, Piazzale L.A. Scuro 10, 37134 Verona (Italy) Fax: +39-045-8027498 E-mail:[email protected]

Extract

The corpus callosum (CC) is the brain's largest white matter tract, mostly composed by both myelinated and unmyelinated fibres, connecting the two cerebral hemispheres. The CC can be divided into different sections: rostrum, genu, body, isthmus and splenium (Aboitiz et al., 1992). Myelinated fibres predominate in the midbody and the splenium while unmyelinated fibres are more numerous in the rostrum and the genu. The callosal fiber disposition approximately reflects brain topography: the anterior sections connect the frontal lobes, the median sections connect temporal and parietal regions, and the posterior sections link occipital areas (Pandya et al., 1971). This traditional picture, however, which has been obtained mainly through studies in non-human primates has been partly modified by modern diffusion tensor imaging studies in humans (Hofer & Frahm, 2006). The CC matures after birth through adolescence and into early adulthood and is involved in different cognitive processes such as sensory-motor integration, attention, language, arousal and memory. Its size has been shown to be associated with handedness, sex (i.e., greater splenium in females and greater genu in males, Dubb et al., 2003) and cerebral laterality (i.e., inverse correlation between callosal connectivity and brain lateralization in males; Luders et al., 2003), and age (Ota et al., 2006) Specifically, age-related callosal degeneration has been detected by a diffusion tensor imaging (DTI) study (Ota et al., 2006) in the sub-regions that connect areas which are thought to be vulnerable to normal aging: the genu, rostral body, and isthmus. This result replicated post mortem findings of callosal degeneration in rostral body, anterior midbody and isthmus (Aboitiz et al., 1996).

Type
Neurobiology of Psychosis. Clinical and Psychosocial Implications
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aboitiz, F. (1992). Brain connections: interhemispheric fiber systems and anatomical brain asymmetries in humans. Biological Research 25, 5161.Google ScholarPubMed
Aboitiz, F., Rodríguez, E., Olivares, R. & Zaidel, E. (1996). Age-related changes in fibre composition of the human corpus callosum: sex differences. Neuroreport 7, 1761–4.CrossRefGoogle ScholarPubMed
David, A.S. (1993). Callosal transfer in schizophrenia: too much or too little? Journal of Abnormal Psychology 102, 573579.CrossRefGoogle ScholarPubMed
Diwadkar, V.A., DeBellis, M.D., Sweeney, J.A., Pettegrew, J.W. & Keshavan, M.S. (2004). Abnormalities in MRI-measured signal intensity in the corpus callosum in schizophrenia. Schizophrenia Research 67, 277282.CrossRefGoogle ScholarPubMed
Dubb, A., Gur, R., Avants, B. & Gee, J. (2003). Characterization of sexual dimorphism in the human corpus callosum. Neuroimage 20, 512519.CrossRefGoogle ScholarPubMed
Feinberg, I. (1982). Schizophrenia: caused by a fault in programmed synaptic elimination during adolescence? Journal of Psychiatric Research 17, 319334.CrossRefGoogle ScholarPubMed
Florio, V., Fossella, S., Maravita, A., Miniussi, C. & Marzi, C.A. (2002). Interhemispheric transfer and laterality effects in simple visual reaction time in schizophrenics. Cognitive Neuropsychiatry 7, 97111.CrossRefGoogle ScholarPubMed
Friston, K.J. & Frith, C.D. (1995). Schizophrenia: a disconnection syndrome? Clinical Neuroscience 3, 8997.Google ScholarPubMed
Gazzaniga, M.S. (2000).Cerebral specialization and interhemispheric communication: does the corpus callosum enable the human condition? Brain 123, 12931326.CrossRefGoogle ScholarPubMed
Hiatt, K.D. & Newman, J.P.(2007). Behavioral Evidence of prolonged interhemispheric transfer time among psychopathic offenders. Neuropsychology 21, 131318.CrossRefGoogle ScholarPubMed
Highley, J.R., Esiri, M.M., McDonald, B., Cortina-Borja, M., Herron, B.M. & Crow, T.J. (1999). The size and fibre composition of the corpus callosum with respect to gender and schizophrenia: a post-mortem study. Brain 122, 99110.CrossRefGoogle ScholarPubMed
Hofer, S. & Frahm, J. (2006). Topography of the human corpus callosum revisited-comprehensive fiber tractography using diffusion tensor magnetic resonance imaging. Neuroimage 32, 989994.CrossRefGoogle ScholarPubMed
Iacoboni, M. & Zaidel, E. (2004). Interhemispheric visuo-motor integration in humans: the role of the superior parietal cortex. Neuropsychologia 42, 419425.CrossRefGoogle ScholarPubMed
Keller, A., Jeffries, N.O., Blumenthal, J., Clasen, L.S., Liu, H., Giedd, J.N. & Rapoport, J.L. (2003). Corpus callosum development in childhoodonset schizophrenia. Schizophrenia Research 105–114.CrossRefGoogle Scholar
Killackey, E, Yung, A R, McGorry, P D. (2007). Early psychosis: where we've been, where we still have to go. Epidemiologia e Psichiatria Sociale 16, 102108.CrossRefGoogle ScholarPubMed
Luders, E., Rex, D.E., Narr, K.L., Woods, R.P., Jancke, L., Thompson, P.M., Mazziotta, J.C. & Toga, A.W. (2003). Relationships between sulcal asymmetries and corpus callosum size: gender and handedness effects. Cerebral Cortex 13, 10841093.CrossRefGoogle ScholarPubMed
Marzi, C.A. (1999). The Poffenberger paradigm: a first, simple, behavioural tool to study interhemispheric transmission in humans. Brain Research Bulletin 50, 421422.CrossRefGoogle ScholarPubMed
Marzi, C.A., Bisiacchi, P., Nicoletti, R. (1991). Is interhemispheric transfer of visuomotor information asymmetric? Evidence from a metaanalysis. Neuropsychologia 29,1163–77.CrossRefGoogle ScholarPubMed
Mohr, B., Pulvermuller, F., Cohen, R. & Rockstroh, B. (2000). Interhemispheric cooperation during word processing: evidence for callosal transfer dysfunction in schizophrenic patients. Schizophrenia Research 46, 231239.CrossRefGoogle ScholarPubMed
Omura, K., Tsukamoto, T., Kotani, Y., Ohgami, Y., Minami, M. & Inoue, Y. (2004). Different mechanisms involved in interhemispheric transfer of visuomotor information. Neuroreport 15, 2707–11.Google ScholarPubMed
Ota, M., Obata, T., Akine, Y., Ito, H., Ikehira, H., Asada, T. & Suhara, T. (2006). Age-related degeneration of corpus callosum measured with diffusion tensor imaging. Neuroimage 31, 14451452.CrossRefGoogle ScholarPubMed
Pandya, D.N., Karol, E.A. & Heilbronn, D. (1971). The topographical distribution of interhemispheric projections in the corpus callosum of the rhesus monkey. Brain Research 32, 3143.CrossRefGoogle ScholarPubMed
Parker, J.D., Keightley, M.L., Smith, C.T. & Taylor, G.J. (1999). Interhemispheric transfer deficit in alexithymia: an experimental study. Psychosomatic Medicine 61, 464468.CrossRefGoogle ScholarPubMed
Poffenberger, A.T. (1912). Reaction time to retinal stimulation with special reference to the time lost in conduction through nervous centers. Archives of Psychology 23, 173.Google Scholar
Ruggeri, M. & Tansella, M. (2007). Achieving a better knowledge on the causes and early course of psychoses: a profitable investment for the future? Epidemiologia e Psichiatria Sociale 16, 91101.CrossRefGoogle ScholarPubMed
Shelton, E.J. & Knight, R.G. (1984). Inter-hemispheric transmission times in schizophrenics. British Journal of Clinical Psychology 23, 227228.CrossRefGoogle ScholarPubMed
Schulte, T., Sullivan, E.V., Muller-Oehring, E.M., Adalsteinsson, E. & Pfefferbaum, A. (2005). Corpus callosal microstructural integrity influences interhemispheric processing: a diffusion tensor imaging study. Cerebral Cortex 15, 13841392.CrossRefGoogle ScholarPubMed
Tettamanti, M., Paulesu, E., Scifo, P., Maravita, A., Fazio, F., Perani, D. & Marzi, C.A. (2002). Interhemispheric transmission of visuomotor information in humans: fMRI evidence. Journal of Neurophysiology 88, 10511058.CrossRefGoogle ScholarPubMed
Weber, B., Treyer, V., Oberholzer, N., Jaermann, T., Boesiger, P., Brugger, P., Regard, M., Buck, A., Savazzi, S. & Marzi, C.A. (2005). Attention and interhemispheric transfer: a behavioral and fMRI study. Journal of Cognitive Neuroscience 17, 113123.CrossRefGoogle ScholarPubMed
Westerhausen, R., Kreuder, F., Woerner, W., Huter, R.J., Smit, C.M., Schweiger, E. & Wittling, W. (2006). Interhemispheric transfer time and structural properties of the corpus callosum. Neuroscience Letters 409, 140145.CrossRefGoogle ScholarPubMed