Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-19T04:02:49.896Z Has data issue: false hasContentIssue false

Anatomical MRI findings in mood and anxiety disorders

Published online by Cambridge University Press:  11 October 2011

Paolo Brambilla*
Affiliation:
Department of Psychiatry, IRCCS S. Matteo, University of Pavia. School of Medicine, Pavia, Italy Department of Psychiatry, University of Texas Health Sciences Center, San Antonio (TX), USA Advanced Biotechnology Center, University of Genova, Genova, Italy
Francesco Barale
Affiliation:
Department of Psychiatry, IRCCS S. Matteo, University of Pavia. School of Medicine, Pavia, Italy
Edgardo Caverzasi
Affiliation:
Department of Psychiatry, IRCCS S. Matteo, University of Pavia. School of Medicine, Pavia, Italy
Jair Constante Soares
Affiliation:
Department of Psychiatry, University of Texas Health Sciences Center, San Antonio (TX), USA
*
Indirizzo per la corrispondenza: Dr. P. Brambilla, Dipartimento di Psichiatria, Università degli Studi di Pavia, IRCCS S. Matteo, Pavia. Fax: +39-0382-680.0936 E-mail: [email protected]

Summary

ObjectiveIn vivo structural magnetic resonance imaging (MRI) studies have evaluated the brain anatomy of various psychiatric disorders, allowing the investigation of putative abnormal brain circuits possibly involved in the patophysiology of psychiatric disorders. Here we reviewed the structural MRI literature in mood and anxiety disorders. Methods – All anatomical MRI studies evaluating mood and anxiety disorder patients were identified through a comprehensive Medline search conducted for the period from 1966 to January 2002, and a manual search of bibliographic cross-referencing complemented the Medline search. Results – Differential patterns of anatomical brain abnormalities appear to be involved in subtypes of mood disorders, with hippocampus and basal ganglia being abnormal in unipolar disorder, and amygdala and cerebellum in bipolar disorders, suggesting that these two mood disorders are biologically distinct. As for anxiety disorders, orbital frontal regions and basal ganglia have been reported to be anatomically abnormal in obsessive-compulsive disorder, temporal lobe was found to be abnormally reduced in panic disorder, and abnormal hippocampus shrinkage was shown in posttraumatic stress disorder. Conclusions – The structural MRI findings reviewed here suggest abnormalities in specific brain regions participating in proposed neuroanatomic models possibly involved in the pathophysiology of mood disorders and anxiety disorders. Nonetheless, available MRI studies have suffered from limitations related to relatively small patient samples and involvement of medicated patients, and were largely cross-sectional investigations. Therefore, longitudinal MRI studies involving more sizeable samples of drug-free patients, patients at first episode of illness or at high risk for mood or anxiety disorders, associated to genetic studies, are likely to be extremely valuable to separate state from trait brain abnormalities and to characterize further the pathophysiology of these disorders.

Riassunto

Scopo – Gli studi con Risonanza Magnetica Nucleare (RMN) hanno permesso la valutazione in vivo dell'anatomia cerebrale di vari disturbi psichiatrici e l'approfondimento degli ipotetici circuiti cerebrali disfunzionali coinvolti nella patofisiologia di queste malattie. In questo articolo abbiamo revisionato la letteratura comprendente gli studi con RMN condotti nei disturbi dell'umore e d'ansia. Metodi – Tutti gli studi in Inglese con RMN condotti in pazienti con disturbo dell'umore o d'ansia pubblicati tra il 1966 ed il gennaio 2002 sono stati identificati attraverso una ricerca Medline, completata dall'analisi manuale delle referenze bibliografiche. Risultati – Differenti aree anatomiche cerebrali sembrano essere coinvolte nei diversi sottotipi di disturbo dell'umore. Infatti, l'ippocampo ed i gangli della base sembrano essere anormali nei disturbo unipolare, mentre l'amigdala ed il cervelletto in quello bipolare. Questo suggerisce che le due malattie abbiano un substrata biologico distinto. Per quanto riguarda i disturbi d'ansia, le regioni orbito-frontali ed i gangli della base sembrano avere un'anatomia anormale nei disturbo ossessivo-compulsivo, i lobi temporali nei disturbo da attacchi di panico e l'ippocampo nei disturbo post-traumatico da stress. Conclusioni – I dati della letteratura riassunti in questo articolo suggeriscono che specifiche aree cerebrali siano coinvolte nella patofisiologia dei disturbi dell'umore e d'ansia. Tuttavia, gli studi a tutt'oggi a disposizione sono stati condotti su campioni relativamente piccoli di soggetti, spesso sottoposti a medicamenti psicotropi, e sono in gran parte studi trasversali. Per tale motivo gli studi con RMN in futuro dovranno avere un disegno di tipo longitudinale ed arruolare campioni più ampi di soggetti, possibilmente senza trattamento psicofarmacologico, al primo episodio di malattia o ad alto rischio di sviluppare un disturbo dell'umore o d'ansia. Inoltre, l'associazione di questo tipo di ricerche con studi di tipo genetico potranno essere estremamente utili per separare anomalie anatomiche cerebrali di stato da quelle di tratto e per ulteriormente caratterizzare la patofisiologia di questi disturbi.

Type
Invited Papers
Copyright
Copyright © Cambridge University Press 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abas, M.A., Sahakian, B.J. & Levy, R. (1990). Neuropsychological deficits and CT scan changes in elderly depressives. Psychological Medicine 20, 507520.Google Scholar
Alexander, G.E., Crutcher, M.D. & DeLong, M.R. (1990). Basal ganglia-thalamocortical circuits: parallel substrates for motor, oculomotor, “prefrontal” and “limbic” functions. Progress in Brain Researches, 119146.Google Scholar
Altshuler, L.L., Conrad, A., Hauser, P., Li, X.M., Guze, B.H., Denikoff, K., Tourtellotte, W. & Post, R. (1991). Reduction of temporal lobe volume in bipolar disorder: a preliminary report of magnetic resonance imaging [letter]. Archives of General Psychiatry 48, 482483.Google Scholar
Altshuler, L.L., Bartzokis, G., Grieder, T, Curran, J. & Mintz, J. (1998). Amygdala enlargement in bipolar disorder and hippocampal reduction in schizophrenia: an MRI study demonstrating neuroanatomic specificity [letter]. Archives of General Psychiatry 55, 663664.Google Scholar
Altshuler, L.L., Bartzokis, G., Grieder, T., Curran, J., Jimenez, T., Leight, K., Wilkins, J., Gerner, R. & Mintz, J. (2000). An MRI study of temporal lobe structures in men with bipolar disorder or schizophrenia. Biological Psychiatry 48, 147162.Google Scholar
Andreasen, N.C., Swayze, V.D., Flaum, M., Alliger, R. & Cohen, G. (1990). Ventricular abnormalities in affective disorder: clinical and demographic correlates. American Journal of Psychiatry 147, 893900.Google Scholar
Ashtari, M., Greenwald, B.S., Kramer-Ginsberg, E., Hu, J., Wu, H., Patel, M., Aupperle, P. & Pollack, S. (1999). Hippocampal/amygdala volumes in geriatric depression. Psychological Medicine 29, 629638.CrossRefGoogle ScholarPubMed
Axelson, D.A., Doraiswamy, P.M., McDonald, W.M., Boyko, O.B., Tupler, L.A., Patterson, L.J., Nemeroff, C.B., Ellinwood, E.H. Jr & Krishnan, K.R. (1993). Hypercortisolemia and hippocampal changes in depression. Psychiatry Research 47, 163173.CrossRefGoogle ScholarPubMed
Aylward, E.H., Roberts-Twillie, J.V., Barta, P.E., Kumar, A.J., Harris, G.J., Geer, M., Peyser, C.E. & Pearlson, G.D. (1994). Basal ganglia volumes and white matter hyperintensities in patients with bipolar disorder. American Journal of Psychiatry 151, 687693.Google Scholar
Aylward, E.H., Harris, G.H., Hoehn-Saric, R., Barta, P.E., Machlin, S.R. & Pearlson, G.D. (1996). Normal caudate nucleus in obsessivecompulsive disorder assessed by quantitative neuroimaging. Archives of General Psychiatry 53, 577584.CrossRefGoogle ScholarPubMed
Baumann, B., Bornschlegl, C, Krell, D. & Bogerts, B. (1997). Changes in CSF spaces differ in endogenous and neurotic depression. A planimetric CT scan study. Journal of Affective Disorders 45, 179188.CrossRefGoogle ScholarPubMed
Beats, B., Levy, R. & Forstl, H. (1991). Ventricular enlargement and caudate hyperdensity in elderly depressives. Biological Psychiatry 30, 452458.CrossRefGoogle ScholarPubMed
Behar, D., Rapoport, J.L., Berg, C.J., Denckla, M.B., Mann, L., Cox, C, Fedio, P., Zahn, T. & Wolfman, M.G. (1984): Computerized tomography and neuropsychological tet measures in adolescents with obsessive-compulsive disorder. American Journal of Psychiatry 141, 363369.Google Scholar
Bell, C.J., Malizia, A. L. & Nutt, D.J. (1999). The neurobiology of social phobia. European Archives of Psychiatry and Clinical Neuroscience 249, SI 118.CrossRefGoogle ScholarPubMed
Bonne, O., Brandes, D., Gilboa, A., Gomori, J.M., Shenton, M.E., Pitman, R.K. & Shalev, A.Y. (2001). Longitudinal MRI study of hippocampal volume in trauma survivors with PTSD. American Journal of Psychiatry 158, 12481251.CrossRefGoogle ScholarPubMed
Brambilla, P., Harenski, K., Nicoletti, M., Mallinger, A.G., Frank, E., Kupfer, D.J. &, Soares, J.C. (2001a). Differential effects of age on brain gray matter in bipolar patients and healthy individuals. Neuropsychobiology 43, 242247.Google Scholar
Brambilla, P., Harenski, K., Nicoletti, M., Mallinger, A.G., Frank, E., Kupfer, D.J., Keshavan, M.S. & Soares, J.C. (2001b). Anatomical MRI study of subgenual prefrontal cortex in bipolar and unipolar disorder patients. Neuropsychopharmacology. (in press).Google Scholar
Brambilla, P., Harenski, K., Nicoletti, M., Mallinger, A.G., Frank, E., Kupfer, D.J., Keshavan, M.S. & Soares, J.C. (2001c). Are amygdala volumes abnormal in bipolar disorder patients? Biological Psychiatry 49, 8, SI.Google Scholar
Brambilla, P., Harenski, K., Nicoletti, M.A., Mallinger, A.G., Frank, E., Kupfer, D.J. & Soares, J.C. (2001d). Anatomical MRI study of basal ganglia in bipolar disorder patients. Psychiatry Research 106, 6580.CrossRefGoogle ScholarPubMed
Brambilla, P., Harenski, K., Nicoletti, M., Mallinger, A.G., Frank, E., Kupfer, D.J., Keshavan, M.S. & Soares, J.C. (2001e). Anatomical MRI study of posterior fossa structures and brain ventricles in bipolar disorder patients. Journal of Psychiatric Research 35, 313322.CrossRefGoogle Scholar
Brambilla, P., Harenski, K., Nicoletti, M., Mallinger, A.G., Frank, E., Kupfer, D.J., Keshavan, M.S. & Soares, J.C. (2001f). MRI study of corpus callosum abnormalities in bipolar disorder patients. Biological Psychiatry 49, 8, SI.Google Scholar
Brambilla, P., Harenski, K., Nicoletti, M., Sassi, R.B., Mallinger, A.G., Frank, E., Kupfer, D.J., Keshavan, M.S. & Soares, J.C. (2001g). Corpus callosum signal intensity in bipolar and unipolar disorder patients. Biological Psychiatry 51: 192s.Google Scholar
Bremner, J.D., Randall, P., Scott, T.M., Bronen, R.A., Seibyl, J.P., Southwick, S.M., Delaney, R.C., McCarthy, G., Charney, D.S. & Innis, R.B. (1995). MRI-based measurement of hippocampal volume in patients with combat-related posttraumatic stress disorder. American Journal of Psychiatry 152, 973981.Google ScholarPubMed
Bremner, J.D., Randall, P., Vermetten, E., Staib, L., Bronen, R.A., Mazure, C, Capelli, S., McCarthy, G., Innis, R.B. & Chamey, D.S. (1997). Magnetic resonance imaging-based measurement of hippocampal volume in posttraumatic stress disorder related to childhood physical and sexual abuse—a preliminary report. Biological Psychiatry 41, 2332.Google Scholar
Bremner, J.D., Narayan, M., Anderson, E.R., Staib, L.H., Miller, H.L. & Charney, D.S. (2000). Hippocampal volume reduction in major depression. American Journal of Psychiatry 157, 115118.CrossRefGoogle ScholarPubMed
Brown, F.W., Lewine, R.J., Hudgins, P.A. & Risch, S.C. (1992). White matter hyperintensity signals in psychiatric and nonpsychiatric subjects. American Journal of Psychiatry 149, 620625.Google Scholar
Buchsbaum, M.S., Someya, T., Wu, J.C., Teng, C.Y. & Bunney, W.E. (1997). Neuroimaging bipolar illness with positron emission tomography and magnetic resonance imaging. Psychiatric Annals 27, 489495.Google Scholar
Caetano, S.C., Sassi, R., Brambilla, P., Harenski, K., Nicoletti, M., Mallinger, A.G., Frank, E., Kupfer, D.J., Keshavan, M.S. & Soares, J.C. (2001). MRI study of thalamic volumes in bipolar and unipolar patients and healthy individuals. Psychiatry Research: Neuroimaging 108, 161168.Google Scholar
Chen, G., Zeng, W.Z., Yuan, P.X., Huang, L.D., Jiang, Y.M., Zhao, Z.H. & Manji, H.K. (1999). The mood-stabilizing agents lithium and valproate robustly increase the levels of the neuroprotecu've protein bcl-2 in the CNS. Journal of Neurochemistry 72, 879882.Google Scholar
Coffey, C.E., Figiel, G.S., Djang, W.T. & Weiner, R.D. (1990). Subcortical hyperintensity on magnetic resonance imaging: a comparison of normal and depressed elderly subjects. American Journal of Psychiatry 147, 187189.Google ScholarPubMed
Coffey, C.E., Wilkinson, W.E., Weiner, R.D., Parashos, I.A., Djang, W.T., Webb, M.C., Figiel, G.S. & Spritzer, C.E. (1993). Quantitative cerebral anatomy in depression. A controlled magnetic resonance imaging study. Archives of General Psychiatry 50, 716.Google Scholar
Coffman, J.A., Bornstein, R.A., Olson, S.C., Schwarzkopf, S.B. & Nasrallah, H.A. (1990). Cognitive impairment and cerebral structure by MRI in bipolar disorder. Biological Psychiatry 27, 11881196.CrossRefGoogle ScholarPubMed
Cummings, J.L. (1993). Frontal-subcortical circuits and human behavior. Archives of Neurology 50, 873880.Google Scholar
Cummings, J.L. & Masterman, D.L. (1999). Depression in patients with Parkinson's disease. International Journal of Geriatric Psychiatry 14,711718.3.0.CO;2-1>CrossRefGoogle ScholarPubMed
Dasari, M., Friedman, L., Jesberger, J., Stuve, T.A., Findling, R.L., Swales, T.P. & Schulz, S.C. (1999). A magnetic resonance imaging study of thalamic area in adolescent patients with either schizophrenia or bipolar disorder as compared to healthy controls. Psychiatry Research 91, 155162.CrossRefGoogle ScholarPubMed
De Bellis, M.D., Keshavan, M.S., Clark, D.B., Casey, B.J., Giedd, J.N., Boring, A.M., Frustaci, K. & Ryan, N.D. (1999). A.E. Bennett Research Award. Developmental traumatology. Part II: Brain development. Biological Psychiatry 45, 12711284.Google Scholar
De Bellis, M.D., Hall, J., Boring, A.M., Frustaci, K. & Moritz, G. (2001). A pilot study of hippocampal volums in pediatric maltreatmentrelated posttraumatic stress disorder. Biological Psychiatry 50, 305309.Google Scholar
Dewan, M.J., Haldipur, C.V., Lane, E.E., Ispahani, A., Boucher, M.F. & Major, L.F. (1988). Bipolar affective disorder. I. Comprehensive quantitative computed tomography. Acta Psychiatrica Scandinavica 77, 670676.Google Scholar
Dolan, R.J., Calloway, S.P. & Mann, A.H. (1985). Cerebral ventricular size in depressed subjects. Psyclwlogical Medicine 15, 873878.Google Scholar
Drevets, W.C. & Raichle, M.E. (1992). Neuroanatomical circuits in depression: implications for treatment mechanisms [Review]. Psychopharmacology Bulletin 28, 261274.Google ScholarPubMed
Drevets, W.C., Price, J.L., Simpson, J.R. Jr, Todd, R.D., Reich, T., Vannier, M. & Raichle, M.E. (1997). Subgenual prefrontal cortex abnormalities in mood disorders. Nature 386, 824827.CrossRefGoogle ScholarPubMed
Dupont, R.M., Jernigan, T.L., Gillin, J.C., Butters, N., Delis, D.C. & Hesselink, J.R. (1987). Subcortical signal hyperintensities in bipolar patients detected by MRI. Psychiatry Research 21, 357358.CrossRefGoogle ScholarPubMed
Dupont, R.M., Jernigan, T.L., Butters, N., Delis, D., Hesselink, J.R., Heindel, W. & Gillin, J.C. (1990). Subcortical abnormalities detected in bipolar affective disorder using magnetic resonance imaging. Archives of General Psychiatry 47, 5559.Google Scholar
Dupont, R.M., Jernigan, T.L., Heindel, W., Butters, N., Shafer, K., Wilson, T, Hesselink, J. & Gillin, J.C. (1995). Magnetic resonance imaging and mood disorders. Localization of white matter and other subcortical abnormalities. Archives of General Psychiatry 52, 747755.CrossRefGoogle ScholarPubMed
Elkis, H., Friedman, L., Wise, A. & Meltzer, H.Y. (1995). Meta-analyses of studies of ventricular enlargement and cortical sulcal prominence in mood disorders – comparisons with controls or patients with schizophrenia. Archives of General Psychiatry 52, 735746.Google Scholar
Escalona, P.R., Early, B., McDonald, W.M., Doraiswamy, P.M., Shah, A.S., Husain, M.M., Boyko, O.B., Figiel, G.S., Ellinwood, E.H., Nemeroff, C.B. & Krishnan, R.R. (1993). Reduction of cerebellar volume in major depression: a controlled MRI study. Depression 1, 156158.Google Scholar
Figiel, G.S., Krishnan, K.R., Rao, V.P., Doraiswamy, M., Ellinwood, E.H. Jr, Nemeroff, C.B. & Boyko, O.B. (1991). Subcortical hyperintensities on brain magnetic resonance imaging: a comparison of normal and bipolar subjects. Journal of Neuropsychiatry and Clinical Neurosciences 3, 1822.Google ScholarPubMed
Figueroa, R., Harenski, K., Nicoletti, M., Brambilla, P., Mallinger, A.G., Frank, E., Kupfer, D.J., Keshavan, M.S. & Soares, J.C. (2000). Dorsolateral prefrontal cortex abnormalities in bipolar disorder patients – possible effects of lithium treatment? Biological Psychiatry 47, 8S: 10S.Google Scholar
Fontaine, R., Breton, G., Dery, R., Fontaine, S. & Elie, R (1990). Temporal lobe abnormalities in panic disorder: an MRI study. Biological Psychiatry 27, 304310.Google Scholar
Gorman, J.M., Kent, J.M., Sullivan, G.M. & Coplan, J.D. (2000). Neuroanatomical hypothesis of panic disorder, revised. American Journal of Psychiatry 157, 493505.Google Scholar
Greenwald, B.S., Kramerginsberg, E., Krishnan, K.R.R., Ashtari, M., Aupperle, P.M. & Patel, M. (1996). MRI signal hyperintensities in geriatric depression. American Journal of Psychiatry 153, 12121215.Google Scholar
Gurvits, T.V., Shenton, M.E., Hokama, H., Ohta, H., Lasko, N.B., Gilbertson, M.W., Orr, S.P., Kikinis, R., Jolesz, F.A., McCarley, R.W. & Pitman, R.K. (1996). Magnetic resonance imaging study of hippocampal volume in chronic, combat-related posttraumatic stress disorder. Biological Psychiatry 40, 10911099.Google Scholar
Guze, B.H. & Szuba, M.P. (1992). Leukoencephalopathy and major depression: a preliminary report. Psychiatry Research 45, 169175.Google Scholar
Harvey, I., Persaud, R., Ron, M.A., Baker, G. & Murray, R.M. (1994). Volumetric MRI measurements in bipolars compared with schizophrenics and healthy controls. Psychological Medicine 24, 689699.CrossRefGoogle ScholarPubMed
Hauser, P., Altshuler, L.L., Berrettini, W., Dauphinais, I.D., Gelemter, J. & Post, R.M. (1989a). Temporal lobe measurement in primary affective disorder by magnetic resonance imaging. Journal of Neuropsychiatry & Clinical Neurosciences 1, 128134.Google Scholar
Hauser, P., Dauphinais, I.D., Berrettini, W., DeLisi, L.E., Gelerater, J. & Post, R.M. (1989b). Corpus callosum dimensions measured by magnetic resonance imaging in bipolar affective disorder and schizophrenia. Biological Psychiatry 26, 659668.CrossRefGoogle Scholar
Hauser, P., Matochik, J., Altshuler, L.L., Denicoff, K.D., Conrad, A., Li, X. & Post, R.M. (2000). MRI-based measurements of temporal lobe and ventricular structures in patients with bipolar I and bipolar II disorders. Journal of Affective Disorders 60, 2532.CrossRefGoogle ScholarPubMed
Hirayasu, Y., Shenton, M.E., Salisbury, D.F., Dickey, C.C., Fischer, I.A., Mazzoni, P., Kisler, T., Arakaki, H., Kwon, J.S., Anderson, J.E., Yurgelun-Todd, D., Tohen, M. & McCarley, R.W. (1998). Lower left temporal lobe MRI volumes in patients with first-episode schizophrenia compared with psychotic patients with first-episode affective disorder and normal subjects. American Journal of Psychiatry 155, 13841391.Google Scholar
Hirayasu, Y., Shenton, M.E., Salisbury, D.F., Kwon, J.S., Wible, C.G., Fischer, I.A., Yurgelun-Todd, D., Zarate, C, Kikinis, R., Jolesz, F.A. & McCarley, R.W. (1999). Subgenual cingulate cortex volume in first-episode psychosis. American Journal of Psychiatry 156, 10911093.CrossRefGoogle ScholarPubMed
Husain, M.M., McDonald, W.M., Doraiswamy, P.M., Figiel, G.S., Na, C, Escalona, P.R., Boyko, O.B., Nemeroff, C.B. & Krishnan, K.R. (1991a). A magnetic resonance imaging study of putamen nuclei in major depression. Psychiatry Research 40, 9599.Google Scholar
Husain, M.M., Figiel, G.S., Lurie, S.N., Boyko, O.B., Ellinwood, E.H. Jr, Nemeroff, C.B. & Krishnan, K.R. (1991b). MRI of corpus callosum and septum pellucidum in depression [letter[. Biological Psychiatry 29, 300301.Google Scholar
Iacono, W.G., Smith, G.N., Moreau, M., Beiser, M., Fleming, J.A., Lin, T.Y. & Flak, B. (1988). Ventricular and sulcal size at the onset of psychosis. American Journal of Psychiatry 145, 820824.Google Scholar
Iidaka, T., Nakajima, T., Kawamoto, K., Fukuda, H., Suzuki, Y., Maehara, T. & Shiraishi, H. (1996). Signal hyperintensities on brain magnetic resonance imaging in elderly depressed patients. European Neurology 36, 293299.CrossRefGoogle ScholarPubMed
Insel, T.R., Donnelly, E.F., Lalakea, M.L., Alterman, I.S. & Murphy, D.L. (1983): Neurological and neuropsychological studies of patients with obsessive-compulsive disorder. Biological Psychiatry 18, 741751.Google Scholar
Ivry, R.B. & Baldo, J.V. (1992). Is the cerebellum involved in learning and cognition? Current Opinion in Neurobiology 2, 212216.Google Scholar
Jenike, M.A., Breiter, H.C., Baer, L., Kennedy, D.N., Savage, C.R., Olivares, M.J., O'Sullivan, R.L., Shera, D.M., Rauch, S.L., Keuthen, N., Rosen, B.R., Caviness, V.S. & Filipek, P.A. (1996). Cerebral structural abnormalities in obsessive-compulsive disorder: a quantitative morphometric magnetic resonance imaging study. Archives General Psychiatry 53, 625632.CrossRefGoogle ScholarPubMed
Johnstone, E.C., Owens, D.G., Crow, T.J., Frith, C.D., Alexandropolis, K., Bydder, G. & Colter, N. (1989). Temporal lobe structure as determined by nuclear magnetic resonance in schizophrenia and bipolar affective disorder. Journal of Neurology, Neurosurgery & Psychiatry 52, 736741.Google Scholar
Kellner, C.H., Jolley, R.R., Holgate, R.C., Austin, L., Lydiard, R.B., Laraia, M. & Ballenger, J.C. (1991). Brain MRI in obsessivecompulsive disorder. Psychiatry Research 36, 4549.CrossRefGoogle Scholar
Kemmerer, M., Nasrallah, H.A., Sharma, S., Olson, S.C., Martin, R. & Lynn, M.B. (1994). Increased hippocampal volume in bipolar disorder [abstract]. Biological Psychiatry 35, 626.Google Scholar
Kim, J.J., Lee, M.C., Kim, I.Y., Kim, S.I., Han, M.H., Chang, K.H. & Kwon, J.S. (2001). Grey matter abnormalities in obsessivecompulsive disorder: statistical parametric mapping of segmented magnetic resonance images. British Journal of Psychiatry 179, 330334.Google Scholar
Krishnan, K.R., Doraiswamy, P.M., Figiel, G.S., Husain, M.M., Shah, S.A., Na, C, Boyko, O.B., McDonald, W.M., Nemeroff, C.B. & Ellinwood, E.H. Jr (1991a). Hippocampal abnormalities in depression. Journal of Neuropsychiatry and Clinical Neuroscience 3, 387391.Google Scholar
Krishnan, K.R., Doraiswamy, P.M., Lurie, S.N., Figiel, G.S., Husain, M.M., Boyko, O.B., Ellinwood, E.H. Jr & Nemeroff, C.B. (1991b). Pituitary size in depression. Journal of Clinical Endocrinology and Metabolism 72, 256259.Google Scholar
Krishnan, K.R., McDonald, W.M., Escalona, P.R., Doraiswamy, P.M., Na, C, Husain, M.M., Figiel, G.S., Boyko, O.B., Ellinwood, E.H. & Nemeroff, C.B. (1992). Magnetic resonance imaging of the caudate nuclei in depression. Preliminary observations. Archives General Psychiatry 49, 553557.Google Scholar
Krishnan, K.R., McDonald, W.M., Doraiswamy, P.M., Tupler, L.A., Husain, M., Boyko, O.B., Figiel, G.S. & Ellinwood, E.H. Jr (1993). Neuroanatomical substrates of depression in the elderly. European Archives of Psychiatry and Clinical Neuroscience 243, 4146.Google Scholar
Lacerda, AL, Nicoletti, M, Brambilla, P, Sassi, RB, Mallinger, Frank E, Kupfer, DJ, Keshovan, I, Soares, JC (2002). Anatomical study of basal gani in major depressive disorder. Biol Psych 51: 124s.Google Scholar
Lacerda, AL, Nicoletti, M, Brambilla, P, Sassi, RB, Mallinger, Frank E, Kupfer, DJ, Keshovan, I, Soares, JC (2002). Anatomical MRI studies corpus callosum in unipolar depression. Biol Psychi 51: 177s.Google Scholar
Lai, T., Payne, M.E., Byrum, C.E., Steffens, D.C. & Krishnan, K.R. (2000). Reduction of orbital frontal cortex volume in geriatric depression. Biological Psychiatry 48, 971975Google Scholar
Lenze, E.J. & Sheline, Y.I. (1999). Absence of striatal volume differences between depressed subjects with no comorbid medical illness and matched comparison subjects. American Journal of Psychiatry 156, 19891991.Google Scholar
Lesser, I.M., Miller, B.L., Boone, K.B., Hill-Gutierrez, E., Mehringer, C.M., Wong, K. & Mena, I. (1991). Brain injury and cognitive function in late-onset psychotic depression. Journal of Neuropsychiatry and Clinical Neurosciences 3, 3340.Google ScholarPubMed
Li, D., Chokka, P. & Tibbo, P (2001). Toward an integrative understanding of social phobia. Journal of Psychiatry Neuroscience 26, 190202.Google ScholarPubMed
Lim, K.O., Rosenbloom, M.J., Faustman, W.O., Sullivan, E.V. & Pfefferbaum, A. (1999). Cortical gray matter deficit in patients with bipolar disorder. Schizophrenia Research 40, 219227.CrossRefGoogle ScholarPubMed
Lippmann, S., Manshadi, M., Baldwin, H., Drasin, G., Rice, J. & Alrajeh, S. (1982). Cerebellar vermis dimensions on computerized tomographic scans of schizophrenic and bipolar patients. American Journal of Psychiatry 139, 667668.Google Scholar
Lippmann, S., Manshadi, M., Baldwin, H., Drasin, G., Wagemaker, H, Rice, J, Alrajeh, S. (1985). Cerebral CAT scan imaging in schizophrenic and bipolar patients. Journal of the Kentucky Medical Association 83, 1315.Google Scholar
Luchins, D.J., Lewine, R.R. & Meltzer, H.Y. (1984). Lateral ventricular size, psychopathology, and medication response in the psychoses. Biological Psychiatry 19, 2944.Google Scholar
Luxenberg, J.S., Swedo, S.E., Flament, M.F., Friedland, R.P., Rapoport, J. & Rapoport, S.I. (1988). Neuroanatomical abnormalities in obsessive-compulsive disorder determined with quantitative x-ray computed tomography. American Journal of Psychiatry 145, 10891093.Google Scholar
MacMaster, F.P., Keshavan, M.S., Dick, E.L. & Rosenberg, D.R. (1999a). Corpus callosal signal intensity in treatment-naive pediatric obsessive compulsive disorders. Progress in Neuropsychopharmacology and Biological Psychiatry 23, 601612.CrossRefGoogle Scholar
MacMaster, F.P., Keshavan, M.S. & Rosenberg, D.R. (1999b). Pituitary morphology in treatment-naive pediatric OCD. Presented at the Annual Meeting of the Society for Biological Psychiatry, 1999.Google Scholar
Malizia, A.L. (1999). What do brain imaging studies tell us about anxiety disorders? Journal of Psychopharmacology 13, 372378.CrossRefGoogle ScholarPubMed
Malizia, A.L., Wilson, S.J., Nutt, D.J. & Grasby, P.M. (1996). Brain networks in conditioned anticipatory anxiety in normal volunteers. Journal of Psychopharmacology 10, A42.Google Scholar
Malizia, A.L., Wilson, S.J., Bell, C.M., Nutt, D.J. & Grasby, P.M. (1997). Neural correlates of anxiety provocation in social phobia. Neuroimage 5, S301.Google Scholar
Manji, H.K., Moore, G.J. & Chen, G. (2000). Lithium up-regulates the cytoprotective protein Bcl-2 in the CNS in vivo: a role for neurotrophic and neuroprotective effects in manic depressive illness. Journal of Clinical Psychiatry 61, 8296.Google Scholar
Martinez-Aran, A., Vieta, E., Colom, F., Reinares, M., Benabarre, A., Gasto, C. & Salamero, M. (2000). Cognitive dysfunctions in bipolar disorder: evidence of neuropsychological disturbances. Psychotherapy and Psychosomatics 69, 218.Google Scholar
Mayberg, H.S. (1997). Limbic-cortical dysregulation: a proposed model of depression. Journal of Neuropsychiatry and Clinical Neurosciences 9, 471481.Google ScholarPubMed
McDonald, W.M., Tupler, L.A., Marsteller, F.A., Figiel, G.S., DiSouza, S., Nemeroff, C.B. & Krishnan, K.R. (1999): Hyperintense lesions on magnetic resonance images in bipolar disorder. Biological Psychiatry 45, 965971.Google Scholar
McEwen, B.S. (2000). Effects of adverse experiences for brain structure and function. Biological Psychiatry 48, 721731.Google Scholar
Morris, J.S., Frith, C.D., Perrett, D.I., Rowland, D., Young, A.W., Calder, A.J. & Dolan, R.J. (1996). A differential neural response in the human amygdala to fearful and happy facial expressions. Nature 383, 812815.Google Scholar
Nasrallah, H.A., Jacoby, C.G. & McCalley-Whitters, M. (1981). Cerebellar atrophy in schizophrenia and mania [letter[. Lancet 1, 1102.Google Scholar
Nasrallah, H.A., McCalley-Whitters, M. & Jacoby, C.G. (1982a). Cerebral ventricular enlargement in young manic males – a controlled CT study. Journal of Affective Disorders 4, 1519.CrossRefGoogle Scholar
Nasrallah, H.A., McCalley-Whitters, M. & Jacoby, C.G. (1982b). Cortical atrophy in schizophrenia and mania: a comparative CT study. Journal of Clinical of Psychiatry 43, 439441.Google Scholar
Ontiveros, A., Fontaine, R., Breton, G., Elie, R., Fontaine, S. & Dery, R. (1989). Correlation of severity of panic disorder and neuroanatomical changes on magnetic resonance imaging. Journal of Neuropsychiatry and Clinical Neuroscience 1, 404408.Google Scholar
Parashos, I.A., Tupler, L.A., Blitchington, T. & Krishnan, K.R. (1998). Magnetic-resonance morphometry in patients with major depression. Psychiatry Research 84, 715.Google Scholar
Pearlson, G.D., Garbacz, D.J., Breakey, W.R., Ann, H.S. & DePaulo, J.R. (1984). Lateral ventricular enlargement associated with persistent unemployment and negative symptoms in both schizophrenia and bipolar disorder. Psychiatry Research 12, 19.Google Scholar
Pearlson, G.D., Barta, P.E., Powers, R.E., Menon, R.R., Richards, S.S., Aylward, E.H., Federman, E.B., Chase, G.A., Petty, R.G. & Tien, A.Y. (1997). Medial and superior temporal gyral volumes and cerebral asymmetry in schizophrenia versus bipolar disorder. Biological Psychiatry 41, 114.CrossRefGoogle ScholarPubMed
Peyser, C.E. & Folstein, S.E. (1990). Huntington's disease as a model for mood disorders. Clues from neuropathology and neurochemistry. Molecular and Chemical Neuropathology 12, 99119.Google Scholar
Phillips, A.G. & Carr, G.D. (1987). Cognition and the basal ganglia: a possible substrate for procedural knowledge. Canadian Journal of Neurological Sciences 14, 381385.Google Scholar
Pillay, S., Renshaw, P., Bonello, C, Lafer, B., Fava, M. & Yurgelun-Todd, D. (1998). A quantitative magnetic resonance imaging study of caudate and lenticular nucleus gray matter volume in primary unipolar major depression: relationship to treatment response and clinical severity. Psychiatry Research: Neuroimaging 84, 6174.Google Scholar
Pitman, R.K., Shin, L.M. & Rauch, S.L. (2001). Investigating the pathogenesis of posttraumatic stress disorder with neuroimaging. Journal of Clinical Psychiatry 62, Suppl. 17, 4754.Google Scholar
Potts, N.L., Davidson, J.R., Krishnan, K.R. & Doraiswamy, P.M. (1994). Magnetic resonance imaging in social phobia. Psychiatry Research 52, 3542.Google Scholar
Rabins, P.V., Pearlson, G.D., Aylward, E., Kumar, A.J. & Dowell, K. (1991). Cortical magnetic resonance imaging changes in elderly inpatients with major depression. American Journal of Psychiatry 148, 617620.Google Scholar
Rajkowska, G. (2000). Postmortem studies in mood disorders indicate altered numbers of neurons and glial cells. Biological Psychiatry 48, 766777.Google Scholar
Rajkowska, G., Miguel-Hidalgo, J.J., Wei, J., Dilley, G., Pittman, S.D., Meltzer, H.Y., Overholser, J.C., Roth, B.L. & Stockmeier, C.A. (1999). Morphometric evidence for neuronal and glial prefrontal cell pathology in major depression. Biological Psychiatry 45, 10851098.CrossRefGoogle ScholarPubMed
Rajkowska, G., Halaris, A. & Selemon, L.D. (2001). Reductions in neuronal and glial density characterize the dorsolateral prefrontal cortex in bipolar disorder. Biological Psychiatry 49, 741752.Google Scholar
Rieder, R.O., Mann, L.S., Weinberger, D.R., van Kammen, D.P. & Post, R.M. (1983). Computed tomographic scans in patients with schizophrenia, schizoaffective, and bipolar affective disorder. Archives of General Psychiatry 40, 735739.Google Scholar
Risch, S.C., Lewine, R.J., Kalin, N.H., Jewart, R.D., Risby, E.D., Caudle, J.M., Stipetic, M., Turner, J., Eccard, M.B. & Pollard, W.E. (1992): Limbic-hypothalamic-pituitary-adrenal axis activity and ventricular-to-brain ratio studies in affective illness and schizophrenia. Neuropsychopharmacology 6, 95100.Google Scholar
Robinson, D., Wu, H., Munne, R.A.Ashtari, M., Alvir, J.M., Lerner, G., Koreen, A., Cole, K. & Bogerts, B. (1995): Reduced caudate nucleus volume in obsessive-compulsive disorder. Archives of General Psychiatry 52, 393398.Google Scholar
Rosenberg, D.R., Keshavan, M.S., O'Hearn, K.M., Dick, E.L., Bagwell, W.W., Seymour, A.B., Montrose, D.M., Pierri, J.N. & Birmaher, B. (1997a): Frontostriatal measurement in treatment-naive children with obsessive- compulsive disorder. Archives of General Psychiatry 54, 824830.Google Scholar
Rosenberg, D.R., Keshavan, M.S., Dick, E.L., Bagwell, W.W., MacMaster, F.P. & Birmaher, B. (1997b). Corpus callosal morphology in treatment-naive pediatric obsessive compulsive disorder. Progress in Neuro-psychopharrnacology and Biological Psychiatry 21, 12691283.Google Scholar
Rossi, A., Stratta, P., di Michele, V., Bolino, F., Nistico, R., de Leonardis, R., Sabatini, M.D. & Casacchia, M. (1989): A computerized tomographic study in patients with depressive disorder: a comparison with schizophrenic patients and controls. Ada Psychiatrica Belgica 89, 5661.Google Scholar
Roy, P.D., Zipursky, R.B., Saint-Cyr, J.A., Bury, A., Langevin, R. & Seeman, M.V. (1998). Temporal horn enlargement is present in schizophrenia and bipolar disorder. Biological Psychiatry 44, 418422.Google Scholar
Sapolsky, R.M. (2000). The possibility of neurotoxicity in the hippocampus in major depression: a primer on neuron death. Biological Psychiatry 48, 755765.Google Scholar
Sassi, R.B., Nicoletti, M., Brambilla, P., Harenski, K., Mallinger, A.G., Frank, E., Kupfer, D.J., Keshavan, M.S. & Soares, JC (2001a): White matter hyperintensities in bipolar and unipolar mood disorder subjects. Bipolar Disorders 3 (SI) [abstract 105].Google Scholar
Sassi, R.B., Nicoletti, M., Brambilla, P., Harenski, K., Mallinger, A.G., Frank, E., Kupfer, D.J., Keshavan, M.S. & Soares, J.C. (2001b). Decreased pituitary volume in bipolar patients. Biological Psychiatry 50, 271280.CrossRefGoogle Scholar
Sassi, R.B., Nicoletti, M., Brambilla, P., Mallinger, A.G., Frank, E., Kupfer, D.J., Keshavan, M.S. & Soares, J.C. (unpublished data). Increased gray matter volumes in lithium-treated bipolar disorder patients.Google Scholar
Sax, K.W., Strakowski, S.M., Zimmerman, M.E., DelBello, M.P., Keck, P.E. Jr & Hawkins, J.M. (1999). Frontosubcortical neuroanatomy and the continuous performance test in mania. American Journal of Psychiatry 156, 139141.Google Scholar
Saxena, S. & Rauch, S.L. (2000). Functional neuroimaging and the neuroanatomy of obsessive-compulsive disorder. Psychiatric clinics of North America 23: 563586.Google Scholar
Saxena, S., Brody, A.L., Schwartz, J.M. & Baxter, L.R. (1998). Neuroimaging and frontal-subcortical circuitry in obsessivecompulsive disorder. British Journal of Psychiatry, Suppl. 35, 2637.Google Scholar
Scarone, S., Colombo, C, Livian, S., Abbruzzese, M., Ronchi, P., Locatelli, M., Scotti, G. & Smeraldi, E. (1992). Increased right caudate nucleus size in obsessive-compulsive disorder: detection with magnetic resonance imaging. Psychiatry Research 45, 115121.CrossRefGoogle ScholarPubMed
Schlaepfer, T.E., Harris, G.J., Tien, A.Y., Peng, L.W., Lee, S., Federman, E.B., Chase, G.A., Barta, P.E. & Pearlson, G.D. (1994). Decreased regional cortical gray matter volume in schizophrenia. American Journal of Psychiatry 151, 842848.Google Scholar
Schlegel, S. & Kretzschmar, K. (1987). Computed tomography in affective disorders. Part I. Ventricular and sulcal measurements. Biological Psychiatry 22, 414.Google Scholar
Schwartz, P.J., Loe, J.A., Bash, C.N., Bove, K., Turner, E.H., Frank, J.A., Wehr, T.A. & Rosenthal, N.E. (1997). Seasonality and pituitary volume. Psychiatry Research 74, 151157.Google Scholar
Scott, M.L., Golden, C.J., Ruedrich, S.L. & Bishop, R.J. (1983). Ventricular enlargement in major depression. Psychiatry Research 8, 9193.Google Scholar
Shah, S.A., Doraiswamy, P.M., Husain, M.M., Escalona, P.R., Na, C, Figiel, G.S., Patterson, L.J., Ellinwood, E.H. Jr, McDonald, W.M., Boyko, O.B. et al. (1992). Posterior fossa abnormalities in major depression: a controlled magnetic resonance imaging study. Ada Psychiatrica Scandinavica 85, 474479.Google Scholar
Shah, P.J., Ebmeier, K.P., Glabus, M.F. & Goodwin, GM (1998). Cortical grey matter reductions associated with treatment-resistant chronic unipolar depression. Controlled magnetic resonance imaging study. British Journal of Psychiatry 172, 527532.Google Scholar
Sheline, Y.I., Wang, P.W., Gado, M.H., Cseraansky, J.G. & Vannier, M.W. (1996). Hippocampal atrophy in recurrent major depression. PNAS 93, 39083913.Google Scholar
Sheline, Y.I., Sanghavi, M., Mintun, M.A. & Gado, M.H. (1999). Depression duration but not age predicts hippocampal volume loss in medically healthy women with recurrent major depression. Journal of Neuroscience 19, 50345043.Google Scholar
Shima, S., Shikano, T., Kitamura, T., Masuda, Y., Tsukumo, T., Kanba, S. & Asai, M. (1984). Depression and ventricular enlargement. Ada Psychiatrica Scandinavica 70, 275277.Google Scholar
Soares, J.C. & Mann, J.J. (1997a). The anatomy of mood disordersreview of structural neuroimaging studies. Biological Psychiatry 41, 86106.Google Scholar
Soares, J.C. & Mann, J.J. (1997b). The functional neuroanatomy of mood disorders. J Psychiatric Research 31, 393432.Google Scholar
Soares, J. C., Krishnan, K.R. & Keshavan, M.S. (1996). Nuclear magnetic resonance spectroscopy: new insights into the pathophysiology of mood disorders. Depression 4, 1430.Google Scholar
Soares, J.C., Figueroa, R., Brambilla, P., Harenski, K., Nicoletti, M., Mallinger, A.G., Frank, E., Kupfer, D.J. & Keshavan, M.S. (unpublished data). Dorsolateral prefrontal cortex abnormalities in bipolar disorder patients.Google Scholar
Steffens, D.C., Byrum, C.E., McQuoid, D.R., Greenberg, D.L., Payne, M.E., Blitchington, T.F. et al. (2000). Hippocampal volume in geriatric depression. Biological Psychiatry 48, 301309.Google Scholar
Stein, D.J., Hollander, E., Chan, S., De Caria, C.M., Hilal, S., Liebowitz, M.R. & Klein, D.F. (1993). Computed tomography and neurological soft signs in obsessive-compulsive disorder. Psychiatry Research 50, 143150.Google Scholar
Strakowski, S.M., Wilson, D.R., Tohen, M., Woods, B.T., Douglass, A.W. & Stoll, A.L. (1993a). Structural brain abnormalities in firstepisode mania. Biological Psychiatry 33, 602609.Google Scholar
Strakowski, S.M., Woods, B.T., Tohen, M., Wilson, D.R., Douglass, A.W. & Stoll, A.L. (1993b). MRI subcortical signal hyperintensities in mania at first hospitalization. Biological Psychiatry 33, 204206.CrossRefGoogle ScholarPubMed
Strakowski, S.M., DelBello, M.P., Sax, K.W., Zimmerman, M.E., Shear, P.K., Hawkins, J.M. & Larson, E.R. (1999). Brain magnetic resonance imaging of structural abnormalities in bipolar disorder. Archives of General Psychiatry 56, 254260.Google Scholar
Strakowski, S.M., DelBello, M.P., Adler, C, Cecil, K.M. & Sax, K.W. (2000). Neuroimaging in bipolar disorder. Bipolar Disorders 2, 148164.Google Scholar
Swayze, V.Wd., Andreasen, N.C., Alliger, R.J., Ehrhardt, J.C. & Yuh, W.T. (1990). Structural brain abnormalities in bipolar affective disorder. Ventricular enlargement and focal signal hyperintensities. Archives of General Psychiatry 47, 10541059.Google Scholar
Swayze, V.Wd., Andreasen, N.C., Alliger, R.J., Yuh, W.T. & Ehrhardt, J.C. (1992): Subcortical and temporal structures in affective disorder and schizophrenia: a magnetic resonance imaging study. Biological Psychiatry 31, 221240.Google Scholar
Szeszko, P.R., Robinson, D., Alvir, J.M., Bilder, R.M., Lencz, T., Ashtari, M., Wu, H. & Bogerts, B. (1999). Orbital frontal and amygdala volume reductions in obsessive-compulsive disorder. Archives of General Psychiatry 56, 913919.Google Scholar
Tanaka, Y., Hazama, H., Fukuhara, T. & Tsutsui, T. (1982). Computerized tomography of the brain in manic-depressive patients–a controlled study. Folia Psychiatrica and Neurologica Japonica 36, 137143.Google Scholar
Uhde, T.W. & Kellner, C.H. (1987). Cerebral ventricular size in panic disorder. Journal of Affective Disorders 12, 175178.Google Scholar
Vakili, K., Pillay, S.S., Lafer, B., Fava, M., Renshaw, P.F., Bonello-Cintron, C.M. & Yurgelun-Todd, D.A. (2000). Hippocampal volume in primary unipolar major depression: a magnetic resonance imaging study. Biological Psychiatry 47, 10871090.Google Scholar
Van den Bossche, B., Maes, M., Brussaard, C, Schotte, C, Cosyns, P., De Moor, J. & De Schepper, A. (1991). Computed tomography of the brain in unipolar depression. Journal of Affective Disorders 21, 6774.CrossRefGoogle ScholarPubMed
Vawter, M.P., Freed, W.J. & Kleinman, J.E. (2000). Neuropathology of bipolar disorder. Biological Psychiatry 48, 486504.Google Scholar
Videbech, P. (1997). MRI findings in patients with affective disorder: a meta-analysis. Ada Psychiatrica Scandinavica 96, 157168.Google Scholar
Villareal, G. & King, C.Y. (2001). Brain imaging in posttraumatic stress disorder. Semin Clin Neuropsychiatry 6, 131145.Google Scholar
Vythilingam, M., Anderson, E.R., Goddard, A., Woods, S.W., Staib, L.H., Charney, D.S. & Bremner, J.D. (2000): Temporal lobe volume in panic disorder-a quantitative magnetic resonance imaging study. Psychiatry Research 99, 7582.Google Scholar
Weinberger, D., DeLisi, L.E., Perman, G.P., Targum, S. & Wyatt, R.J. (1982). Computed tomography in schizophreniform disorder and other acute psychiatric disorders. Archives of General Psychiatry 39,778783.Google Scholar
Woods, B.T., Yurgelun-Todd, D., Mikulis, D. & Pillay, S.S. (1995). Agerelated MRI abnormalities in bipolar illness: a clinical study. Biological Psychiatry 38, 846847.Google Scholar
Wu, J.C, Buchsbaum, M.S., Johnson, J.C, Hershey, T.G., Wagner, E.A., Teng, C. & Lottenberg, S. (1993). Magnetic resonance and positron emission tomography imaging of the corpus callosum: size, shape and metabolic rate in unipolar depression. Journal of Affective Disorders 28, 1525.Google Scholar
Wurthmann, C, Bogerts, B. & Falkai, P. (1995). Brain morphology assessed by computed tomography in patients with geriatric depression, patients with degenerative dementia, and normal control subjects. Psychiatry Research 61, 103111.Google Scholar
Yates, W.R., Jacoby, C.G. & Andreasen, N.C. (1987). Cerebellar atrophy in schizophrenia and affective disorder. American Journal of Psychiatry 144, 465467.Google Scholar
Zald, J. & Kim, S.W. (1996). Anatomy and function of the orbital frontal cortex, I: anatomy, neurocircuitry, and obsessivecompulsive disorder. Journal of Neuropsychiatry and Clinical Neurosciences 8, 125138.Google Scholar
Zipursky, R.B., Seeman, M.V., Bury, A., Langevin, R., Wortzman, G. & Katz, R. (1997). Deficits in gray matter volume are present in schizophrenia but not bipolar disorder. Schizophrenia Research 26, 8592.Google Scholar
Zubenko, G.S., Sullivan, P., Nelson, J.P., Belle, S.H., Huff, J. & Wolf, G. (1990). Brain imaging abnormalities in mental disorders of late life. Archives of Neurology 47, 1107–11.Google Scholar