Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-22T15:42:20.442Z Has data issue: false hasContentIssue false

Virulence factors of Francisella tularensis

Published online by Cambridge University Press:  15 May 2009

A. M. Hood
Affiliation:
Microbiological Research Establishment, Porton, Salisbury, Wiltshire
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The mechanism causing viable Francisella tularensis to lose virulence in aerosols has been investigated. Fully virulent organisms were found to be encapsulated and avirulent organisms from aged aerosols, decapsulated. Capsules were also removed by suspension of F. tularensis in hypertonic sodium chloride. The resulting naked, but viable, organisms were predominantly avirulent for guinea-pigs challenged intraperitoneally. Capsular material and cell walls were found to contain large amounts of lipid, about 50 and 70% (w/w) respectively, and to differ in lipid and sugar composition. Isolated capsular material was not found to contain a lethal toxin for mice or guinea-pigs, or to induce an immunological response in these animals to fully virulent F. tularensis.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1977

References

REFERENCES

Abdel-Akher, M., Hamilton, J. K. & Smith, F. (1951). The reduction of sugars with sodium borohydride. Journal of the American Chemical Society 73, 4691.CrossRefGoogle Scholar
Bobo, R. A. & Eagen, R. G. (1968). Lipids of cell walls of Pseudomonas aeruginosa and Brucella abortus. Canadian Journal of Microbiology 14, 503.CrossRefGoogle ScholarPubMed
Buddingh, G. L. & Womack, F. C. (1941). Observations on the infection of chick embryos with Bacterium tularense, Brucella and Pasteurella pestis. Journal of Experimental Medicine 74, 213.CrossRefGoogle ScholarPubMed
Cho, K. Y. & Salton, M. R. J. (1966). Fatty acid composition of bacterial membrane and wall lipids. Biochimica et biophysica acta 116, 73.CrossRefGoogle ScholarPubMed
Duguid, J. P. (1951). The demonstration of bacterial capsules and slime. Journal of Pathology and Bacteriology 63, 673.CrossRefGoogle ScholarPubMed
Eigelsbach, H. T., Braum, W. & Herring, R. D. (1951). Studies on the variation of Bacterium tularense. Journal of Bacteriology 61, 557.CrossRefGoogle ScholarPubMed
Eigelsbach, H. T., Chambers, L. A. & Coriell, L. (1946). Electron microscopy of Bacterium tularense. Journal of Bacteriology 52, 179.Google Scholar
Gordon, M., Donaldson, D. M. & Wright, G. E. (1964). Immunization of mice with irradiated Pasteurella tularensis. Journal of Infectious Diseases 114, 435.CrossRefGoogle ScholarPubMed
Guss, M. L. (1970). Is Pasteurella tularensis lipopolysaccharide an endotoxin? Bacteriological Proceedings p. 89.Google Scholar
Hambleton, P., Evans, C. G. T., Hood, A. M. & Strange, R. E. (1974). Vaccine potencies of the live vaccine strain of Francisella tularensis and isolated bacterial components. British Journal of experimental Pathology 55, 363.Google ScholarPubMed
Hancock, I. C., Humphreys, G. O. & Meadow, P. M. (1970). Characterisation of the hydroxy acids of Pseudomonas aeruginosa 8602. Biochimica et biophysica acta 202, 389.CrossRefGoogle ScholarPubMed
Harper, G. J., Hood, A. M. & Morton, J. D. (1958). Airborne micro-organisms: a technique for studying their survival. Journal of Hygiene 56, 364.CrossRefGoogle ScholarPubMed
Hesselbrock, W. & Foshay, L. (1945). The morphology ofBacterium tularense. Journal of Bacteriology 49, 209.Google Scholar
Hood, A. M. (1961). Infectivity of Pasteurella tularensis clouds. Journal of Hygiene, 59, 497.Google Scholar
Kaneshiro, T. & Marr, A. G. (1963). Hydroxy fatty acids of Azotobacter agilis. Biochimica et biophysica acta 70, 271.Google Scholar
Larson, C. L., Bell, J. F. & Owen, C. R. (1954). The development of resistance in mice immunized with soluble antigen derived fromBacterium tularense. Journal of Immunology 73, 221.CrossRefGoogle ScholarPubMed
May, K. R. (1973). The Collison nebulizer: description, performance and application. Aerosol Science 4, 235.Google Scholar
Mills, R. C., Berthelsen, H., Donaldson, D. & Wilhelm, P. L. (1949). Nutritional requirements of Pasteurella tularense. Bacteriological Proceedings 37.Google Scholar
Moody, M. D. & Downs, C. M. (1955). Studies on Tularaemia. I. The relationship between certain pathogenic and immunogenic properties of variants of Pasteurella tularensis. Journal of Bacteriology 79, 297.CrossRefGoogle Scholar
Nutter, J. E. (1971). Antigens of Pasteurella tularensis: Preparative procedures. Applied Microbiology 22, 44.CrossRefGoogle ScholarPubMed
Nutter, J. E. & Myrvik, Q. M. (1966). In-vitro interactions between rabbit alveolar macro-phages and Pasteurella tularensis. Journal of Bacteriology 92, 645.CrossRefGoogle Scholar
O'Hara, H. (1940). Bacterium tularense and 'Yato-Byo' bacteria. Proceedings of the Third International Congress for Microbiology p. 678.Google Scholar
Ormsbee, R. A., Bell, J. F. & Larson, C. L. (1955). Studies on Bacterium tularense antigens I. The isolation, purification and biological activity of antigen preparations fromBacterium tularense. Journal of Immunology 74, 351.Google Scholar
Ormsbee, R. A. & Larson, C. L. (1955). Studies on Bacterium tularense antigens. II. Chemical and physical characteristics of protective antigen preparations. Journal of Immunology 74, 359.Google Scholar
Ota, I. (1936). Morphological studies of Yato-Byo bacteria and Bacterium tularense, especially flagella staining. Kokumin Eisei 13, 207.Google Scholar
Park, C. E. & Berger, L. R. (1967). Fatty acids of extractable and bound lipids of Rhodo-microbium vanniellii. Journal of Bacteriology 93, 230.Google Scholar
Pavlova, I. B., Meshcheryakova, I. S. & Emelyanova, O. S. (1967). Study of the micro-structure of the two geographic races of the Tularaemia bacterium in strains with different degrees of virulence. Journal of Hygiene, Epidemiology, Microbiology and Immunology (Praha) 11, 320.Google Scholar
Pieroni, R. E., Broderick, E. J., Bundeally, A. & Levine, L. (1970). A simple method for the quantitation of submicrogram amounts of bacterial endotoxin. Proceedings of the Society for Experimental Biology and Medicine 133, 790.Google Scholar
Proctor, R. A., White, J. D., Ayala, E. & Canonico, P. G. (1975). Phagocytosis of Francisella tularensis by Rhesus monkey peripheral leukocytes. Infection and Immunity 11, 146.CrossRefGoogle ScholarPubMed
Salton, M. R. J. (1964). The Bacterial Cell Wall. Amsterdam: Elsevier Publishing Company.Google Scholar
Sawardeker, J. S., Sloneker, J. H. & Jeanes, A. R. (1965). Quantitative determination of monosaccharides as their alditol acetates by gas liquid chromatography. Analytical Chemistry 37, 1602.Google Scholar
Sawyer, W. D., Jemski, J. V., Hogge, A. L., Eigelsbach, H. T., Wolft, E. K., Danger-field, H. G., Gochenour, W. S. & Crozier, D. (1966). Effect of aerosol age on the infectivity of airborne Pasteurella tularensis for Macaca mulatta and man. Journal of Bacteriology 91, 2180.Google Scholar
Schlamm, N. A. (1960). Detection of viability in aged or injured Pasteurella tularensis. Journal of Bacteriology 80, 818.CrossRefGoogle ScholarPubMed
Shepard, C. C. (1959). Non acid fast bacteria and HeLa cells: their uptake and subsequent intracellular growth. Journal of Bacteriology 77, 701.Google Scholar
Shepard, C. C., Ribi, E. & Larson, C. (1954). Electron microscopically revealed structural elements of Bacterium tularense and their in vitro and in vivo role in immunogenic reactions. Journal of Immunology 75, 7.CrossRefGoogle Scholar
Stefanye, D. (1961). Lipopolysaccharides of Pasteurella tularensis. Bacteriological Proceedingsz 129.Google Scholar
Stefanye, D., Tresselt, H. B. & Spero, L. (1961). Observations on the behaviour in vitro of Pasteurella tularensis after phagocytosis. Journal of Bacteriology 81, 470CrossRefGoogle ScholarPubMed
Thorpe, B. D. & Marcus, S. (1964 a). Phagocytosis and intracellular fate of Pasteurella tularensis. I. In vitro studies with rabbit peritoneal mononuclear phagocytes. Journal of Immunology 92, 657.Google Scholar
Thorpe, B. D. & Marcus, S. (1964 b). Phagocytosis and intracellular fate of Pasteurella tularensis. II. In vitro studies with rabbit alveolar and guinea-pig alveolar and peritoneal mononuclear phagocytes. Journal of Immunology 93, 558.Google Scholar
Thorpe, B. D. & Marcus, S. (1965). Phagocytosis and intracellular fate of Pasteurella tularensis. III. In vivo studies with passively transferred cells and sera. Journal of Immunology 94, 578.CrossRefGoogle Scholar
Tornabene, T. G. (1973). Lipid composition of selected strains of Yersinia pestis and Yersinia pseudotuberculosis. Biochimica et biophysica acta 306, 173.CrossRefGoogle ScholarPubMed
Tomcsik, J. (1956). In Bacterial Anatomy (Sixth Symp. of the Society for General Microbiology), p. 41, ed. Spooner, E. T. C. and Stocker, B. A. D.. CambridgeUniversity Press.Google Scholar
Wilkinson, J. F. (1958). The extracellular polysaccharides of bacteria. Bacteriological Reviews 22, 46.CrossRefGoogle Scholar
Zimmerman, L. (1969). Permeability of Serratia marcescens to some inorganic salts. Journal of Bacteriology 97, 749.Google Scholar