Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-22T15:37:01.961Z Has data issue: false hasContentIssue false

Viricidal activity of open air

Published online by Cambridge University Press:  15 May 2009

J. E. Benbough
Affiliation:
Microbiological Research Establishment, Porton Down, Salisbury, Wilts.
A. M. Hood
Affiliation:
Microbiological Research Establishment, Porton Down, Salisbury, Wilts.
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Airborne Semliki Forest virus and T coliphages were inactivated at a considerably enhanced rate in open air compared with enclosed air. Open air exerts its maximum sterilizing activity on viruses contained in the smallest sized particles.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1971

References

REFERENCES

Akers, T. G., Bond, S. & Goldberg, L. J. (1966). Effect of temperature and relative humidity on survival of airborne Columbia SK group viruses. Applied Microbiology 14, 361.CrossRefGoogle ScholarPubMed
Benbough, J. E. (1969). The effect of relative humidity on the survival of airborne Semliki Forest virus. Journal of General Virology 4, 473.CrossRefGoogle ScholarPubMed
Benbough, J. E. (1971). Some factors affecting the survival of airborne viruses. Journal of General Virology 10, 209.CrossRefGoogle ScholarPubMed
Cox, C. S. (1966). The survival of Escherichia coli sprayed into air and into nitrogen from distilled water and from solutions of protecting agents as a function of relative humidity. Journal of General Microbiology 43, 383.CrossRefGoogle ScholarPubMed
Dark, F. A. & Nash, T. (1970). Comparative toxicity of various ozonised olefins to bacteria suspended in air. Journal of Hygiene 68, 245.CrossRefGoogle Scholar
Druett, H. A. & May, K. R. (1968). Unstable germicidal pollutant in rural air. Nature, London 220, 395.CrossRefGoogle ScholarPubMed
Druett, H. A. & Packman, L. P. (1968). Sensitive microbiological detector for air pollution. Nature, London 218, 699.CrossRefGoogle ScholarPubMed
Harper, G. J. (1961). Airborne microorganisms. Survival tests with four viruses. Journal of Hygiene 59, 479.Google ScholarPubMed
Harper, G. J. (1963). The influence of environment on the survival of airborne virus particles in the laboratory. Archiv für Die Gesamte Virusforschung 13, 64.CrossRefGoogle ScholarPubMed
Henderson, R. J. (1969). The outbreak of foot-and-mouth disease in Worcestershire. An epidemiological study; with special reference to spread of disease by wind carriage of the virus. Journal of Hygiene 67, 21.CrossRefGoogle ScholarPubMed
Hood, A. M. (1971). An indoor system for the study of biological aerosols in open air conditions. Journal of Hygiene 69, 607.Google Scholar
Hyslop, N. St G. (1965). Airborne infection with the virus of foot-and-mouth disease. Journal of Comparative Pathology 75, 119.CrossRefGoogle ScholarPubMed
Jong, J. G. De & Winkler, K. C. (1964). Survival of measles virus in air. Nature, London 201, 1054.CrossRefGoogle ScholarPubMed
Jong, J. G. De & Winkler, K. C. (1968). The inactivation of poliovirus in aerosols. Journal of Hygiene 66, 557.Google ScholarPubMed
May, K. R. (1966). Multistage liquid impinger. Bacteriological Reviews 30, 559.CrossRefGoogle ScholarPubMed
May, K. R. & Druett, H. A. (1968). A microthread technique for studying the viability of microbes in a simulated airborne state. Journal of General Microbiology 51, 353.CrossRefGoogle Scholar
May, K. R., Druett, H. A. & Packman, L. P. (1969). Toxicity of open air to a variety of microorganisms. Nature, London 221, 1146.CrossRefGoogle ScholarPubMed
Sellers, R. F. & Parker, J. (1969). Airborne excretion of foot-and-mouth disease virus. Journal of Hygiene 67, 671.Google ScholarPubMed
Songer, J. R. (1967). Influence of relative humidity on the survival of airborne viruses. Applied Microbiology 15, 35.CrossRefGoogle ScholarPubMed