Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-25T06:55:22.801Z Has data issue: false hasContentIssue false

Variation, diurnal and over longer periods of time, in blood haemoglobin, haematocrit, plasma protein, erythrocyte sedimentation rate, and blood chloride

Published online by Cambridge University Press:  15 May 2009

E. T. Renbourn
Affiliation:
Late of a Hygiene Laboratory, M.E.F., and Biological Research Team, India Command
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Although the composition of blood is assumed to be constant within narrow limits, fluctuations in concentration of its constituents have been found by many observers over the period of a day or longer. Shaw (1927), Jores (1934) and others describe daily fluctuations in the white corpuscles, and Sabin et al. (1925) found similar changes in the blood platelets.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1947

References

REFERENCES

Branwood, A. W. (1946). Edinb. Med. J. 52, 225.Google Scholar
Broun, G. O. (1922). J. Exp. Med. 36, 481.CrossRefGoogle Scholar
Davis, J. E. & Brewer, N. (1935). Amer. J. Physiol. 113, 586.CrossRefGoogle Scholar
Dyson, M. & Plaut, G. (1943). Brit. Med. J. 2, 6.CrossRefGoogle Scholar
Fisher, R. A. (1941). Statistical Methods for Research Workers. Edinburgh.Google Scholar
Fisher, R. A. (1942). The Design of Experiment. Edinburgh.Google Scholar
Goldstein, H. (1935). J. Exp. Psychol. 18, 348.CrossRefGoogle Scholar
Gollwitzer-Meier, K. (1931). Klin. Wschr. 10, 341.CrossRefGoogle Scholar
Gollwitzer-Meier, K. & Kroetz, C. (1924). Biochem. Z. 154, 82.Google Scholar
Hammett, F. S. (1920). Amer. J. Physiol. 53, 307.CrossRefGoogle Scholar
Hawk, P. B. (1904). Amer. J. Physiol. 10, 384.CrossRefGoogle Scholar
Hoverson, E. T. & Peterson, W. F. (1934). Amer. J. Med. Sci. 188, 455.CrossRefGoogle Scholar
Jellink, E. M. (1936). Hum. Biol. 8, 581.Google Scholar
Jores, A. (1934). Med. Klin. 30, 468.Google Scholar
Jores, A. & Strutz, H. (1936). Dtsch. med. Wschr. 62, 92.CrossRefGoogle Scholar
McCarthy, E. F. & Van Slyke, D. D. (1939). J. Biol. Chem. 128, 567.CrossRefGoogle Scholar
Menzel, W. (1940). Acta. med. Scand. Suppl. 108, 166.CrossRefGoogle Scholar
Mitchell, J. B. & Black, J. A. (1946). Lancet, 2, 855.CrossRefGoogle Scholar
Mole, R. H. (1945). J. Physiol. 104, 1.CrossRefGoogle Scholar
Mollison, P. L. (1946). Brit. Med. J. 1, 7.CrossRefGoogle Scholar
Perera, G. A. & Berliner, R. W. (1943). J. clin. Invest. 22, 25.CrossRefGoogle Scholar
Platt, V. E. & Freeman, R. G. (1930). Proc. Soc. Exp. Biol., N.Y., 27, 687.CrossRefGoogle Scholar
Phillips, R. A., Van Slyke, D. D., Dole, V. P., Emerson, K., Hamilton, P. B. & Archibald, R. M. (1945). Copper Sulphate Method for Measuring the Specific Gravity of Whole Blood and Plasma. New York: Josiah Macey Jun. Found.Google Scholar
Pucher, A. W., Griffith, F. R., Brownwell, K. A., Klein, J. D. & Carner, M. E. (1934). J. Nutrit. 7, 169.CrossRefGoogle Scholar
Rourke, F. A. & Plass, E. D. (1929). J. clin. Invest. 7, 365.CrossRefGoogle Scholar
Sabin, F. R., Cunningham, R. S., Doan, C. A. & Kindwall, J. A. (1925). Johns Hopk. Hosp. Bull. 37, 14.Google Scholar
Shaw, A. B. F. (1927). J. Path. Bact. 30, 1.CrossRefGoogle Scholar