Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-22T15:07:38.205Z Has data issue: false hasContentIssue false

Use of tartaric acid isomers and citric acid in the biotyping of Salmonella typhimurium

Published online by Cambridge University Press:  15 May 2009

G. A. Alfredsson
Affiliation:
Bacteriology Department, University of Dundee
Ruth M. Barker
Affiliation:
Bacteriology Department, University of Dundee
D. C. Old
Affiliation:
Bacteriology Department, University of Dundee
J. P. Duguid
Affiliation:
Bacteriology Department, University of Dundee
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The colour-change and lead acetate tests for fermentation of d–, l–and m–tartaric acids and citric acid used in the Kristensen scheme for biotyping Salmonella typhimurium were found to be unreliable because, whatever the conditions of culture, they gave different results in replicate tests of the same strains. Many genotypically non-fermenting strains gave inconsistent reactions due to the emergence of fermenting mutant bacilli in some of their test cultures. No reliable test was found for the fermentation of citric acid.

A ‘turbidity’ test was found to give consistent and reliable results with the three tartaric acid isomers. It demonstrated fermentation by the significantly greater amount of growth obtained in a 24 hr. culture in Oxoid peptone water with added isomer than in a control culture without isomer. Lewis & Stocker's (1971) plate-inhibition test for fermentation of m–tartrate, which identifies m–tartrate-negative strains because m–tartrate inhibits their growth on citrate- or glycerol-containing minimal medium, was found to be as reliable as, and easier to read than, the turbidity test.

Use of the turbidity test for d–and l–tartrates and the plate-inhibition test for m–tartrate in biotyping 1435 strains of S. typhimurium showed that many strains had previously been mistyped by the lead acetate test and distinguished 16 new biotypes in addition to the 22 biotypes already recognized.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1972

References

REFERENCES

Brown, H. C., Duncan, J. T. & Henry, T. A. (1924). The fermentation of salts of organic acids as an aid to differentiation of bacterial types. Journal of Hygiene 23, 122.CrossRefGoogle ScholarPubMed
Callow, B. R. (1959). A new phage-typing scheme for Salmonella typhimurium. Journal of Hygiene 57, 346–59.CrossRefGoogle Scholar
Davis, B. D. & Mingioli, E. S. (1950). Mutants of Escherichia coli requiring methionine or vitamin B12. Journal of Bacteriology 60, 1728.CrossRefGoogle ScholarPubMed
Duguid, J. P., Anderson, E. S. & Campbell, I. (1966). Fimbriae and adhesive properties in salmonellae. Journal of Pathology and Bacteriology 92, 107–38.CrossRefGoogle ScholarPubMed
Felix, A. & Callow, B. R. (1943). Typing of paratyphoid B bacilli by means of Vi bacteriophage. British Medical Journal ii, 127–30.CrossRefGoogle Scholar
Felix, A. & Callow, B. R. (1951). Paratyphoid B Vi-phage typing. Lancet ii, 1014.CrossRefGoogle Scholar
Hansen, A. C. (1942). Die beim Hausgeflügel in Dänemark festgestellten Salmonellatypen. Zentralblatt für Bakteriologie, Parasitenkunde, Infektionskrankheiten und Hygiene, Originale 149, 222–35.Google Scholar
Harhoff, N. (1948). Gastroenteritisbaciller af Salmonellagruppen i Danmark, chap. 2. Copenhagen: Nyt Nordisk Forlag.Google Scholar
Kallings, L. O. & Laurell, A. B. (1957). Relation between phage types and fermentation types of Salmonella typhimurium. Acta pathologica et microbiologica scandinavica 40, 328–42.CrossRefGoogle Scholar
Kallings, L. O., Laurell, A. B. & Zetterberg, B. (1959). An outbreak due to Salmonella typhimurium in veal with special reference to phage and fermentation typing. Acta pathologica et microbiologica scandinavica 45, 347–56.CrossRefGoogle ScholarPubMed
Kauffmann, F. (1966). The Bacteriology of Enterobacteriaceae, p. 365. Copenhagen: Munksgaard.Google Scholar
Kristensen, M. (1944). Recherches sur la fermentation mutative des bactéries. XIII. Fermentations mutatives chez des bactéries coliformes. Acta pathologica et microbiologica scandinavica 21, 957–71.CrossRefGoogle Scholar
Kristensen, M., Bojlen, K. & Faarup, C. (1937). Bakteriologisk-Epidemiologiske Erfaringer om Infektioner med Gastroenteritisbaciller af Paratyphusgruppen. Bibliotek for Laeger, Copenhagen 129, 310–75.Google Scholar
Lewis, M. J. & Stocker, B. A. D. (1971). A biochemical subdivision of one phage type of Salmonella typhimurium. Journal of Hygiene 69, 683–91.Google ScholarPubMed
Lilleengen, K. (1948). Typing of Salmonella typhimurium by means of bacteriophage. Acta pathologica et microbiologica scandinavica suppl. 77, 1125.Google Scholar
Meynell, G. G. & Meynell, E. (1965). Theory and Practice in Experimental Bacteriology, p. 36. Cambridge University Press.Google Scholar
Morgenroth, A. & Duguid, J. P. (1968). Demonstration of different mutational sites controlling rhamnose fermentation in FIRN and non-FIRN rha strains of Salmonella typhimurium: an essay in bacterial archaeology. Genetical Research, Cambridge 11, 151–69.CrossRefGoogle ScholarPubMed
Rische, H. & Kretzschmar, W. (1962). Biochemotypen und Lysotypen von S. typhimurium. Archiv für Hygiene und Bakteriologie 146, 530–39.Google Scholar