Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-22T15:28:24.540Z Has data issue: false hasContentIssue false

The survival of Escherichia coli in an aerosol at air temperatures of 15 and 30 °C and a range of humidities

Published online by Cambridge University Press:  19 October 2009

C. M. Wathes
Affiliation:
Department of Animal Husbandry, University of Bristol, Langford, Bristol BS18 7DU
K. Howard
Affiliation:
Department of Animal Husbandry, University of Bristol, Langford, Bristol BS18 7DU
A. J. F. Webster
Affiliation:
Department of Animal Husbandry, University of Bristol, Langford, Bristol BS18 7DU
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The survival of Escherichia coli in an aerosol was studied at several temperatures and over a range of relative humidities using a Henderson apparatus.

Death occurred in two phases, the first lasting approximately 1 min; in the second the number of viable microorganisms declined exponentially. E. coli was robust and remained viable for many hours. Death was most rapid at low humidities (< 50% r.h.) at 15 and 30 °C, with half-lives of 14 and 3 min respectively. In humid conditions the half-lives were much longer, approximately 83 and 14 min respectively.

Based on this work, preliminary recommendations for the climate of livestock buildings can now be given to control the airborne spread of E. coli.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1986

References

REFERENCES

Anderson, J. D. (1966). Biochemical studies of lethal processes in aerosols of Escherichia coli. Journal of General Microbiology 45, 303313.CrossRefGoogle Scholar
Anderson, J. D. & Cox, C. S. (1967). Microbial survival. Symposia of the Society for General Microbiology 17, 203226.Google Scholar
Benbough, J. E. (1967). Death mechanisms in airborne Escherichia coli. Journal of General Microbiology 47, 325333.CrossRefGoogle Scholar
Boyce, R. P. & Setlow, R. B. (1962). A simple method of increasing the incorporation of thymidine into the deoxyribonucleic acid of Escherichia coli. Biochimica et Biophysica Acta 61, 618620.Google Scholar
Bruce, J. M. (1981). Ventilation and temperature control criteria for pigs. In Environmental Aspects of Housing for Animal Production (ed. Clark, J. A.), pp. 197216. London: Butterworths.CrossRefGoogle Scholar
Cox, C. S. (1966 a). The survival of Escherichia coli sprayed into air and into nitrogen from distilled water and from solutions of protecting agents, as a function of relative humidity. Journal of General Microbiology 43, 383399.CrossRefGoogle Scholar
Cox, C. S. (1966 b). The survival of Escherichia coli in nitrogen atmospheres under changing conditions of relative humidity. Journal of General Microbiology 45, 283288.CrossRefGoogle Scholar
Cox, C. S. (1968). The aerosol survival of Escherichia coli B in nitrogen, argon and helium atmospheres and the influence of relative humidity. Journal of General Microbiology 50 139147.Google Scholar
Cox, C. S. (1970). Aerosol survival of Escherichia coli B disseminated from the dry state. Applied Microbiology 19, 604607.CrossRefGoogle Scholar
Cruickshank, R., Duguid, J. P., Marmion, B. P. & Swain, R. H. A. (1973). In Medical Microbiology, 12th ed.Edinburgh: Churchill Livingstone.Google Scholar
Druett, H. A. (1969). A mobile form of the Henderson apparatus. Journal of Hygiene 67, 437448.CrossRefGoogle Scholar
Dunklin, E. W. & Puck, T. T. (1948). The lethal effect of relative humidity on airborne bacteria. Journal of Experimental Medicine 87, 87101.Google Scholar
Ehrlich, R., Miller, S. & Walker, R. L. (1970). Relationship between atmospheric temperature and survival of airborne bacteria. Applied Microbiology 19, 245249.CrossRefGoogle Scholar
Ferry, R. M., Brown, W. F. & Damon, E. B. (1958). Studies of the loss of viability of stored bacterial aerosols. II. Death rates of several non-pathogenic organisms in relation to biological and structural characteristics. Journal of Hygiene 56, 125150.CrossRefGoogle Scholar
Goldberg, L. J., Watkins, H. M. S., Boerke, E. E. & Chatigny, M. A. (1958). The use of a rotating drum for the study of aerosols over extended periods of time. American Journal of Hygiene 68, 8593.Google Scholar
May, K. R. (1973). The Collison nebulizer: description, performance and application. Aerosol Science 4, 235243.Google Scholar
May, K. R. & Harper, G. J. (1957). The efficiency of various liquid impinger samples in bacterial aerosols. British Journal of Industrial Medicine 14, 287297.Google Scholar
Müller, W., Gröning, K. & Hartmann, F. (1981). Die Tenazitat von Bakterien im luftgetragenen Zustand. I. Mitteilung: Experimentelle Untersuchungen zur Bestimmung der Absterbekonstante B für E. coli, Salmonella spp. und P. multocida. Zentralblatt für Bakteriologie Mikrobiologie und HygieneI. Abt. Originale B. 172, 367376.Google Scholar
Songer, J. R. (1967). Influence of relative humidity on the survival of some airborne viruses. Applied Microbiology 15, 3542.CrossRefGoogle Scholar
Strange, R. E., Benbough, J. E.Hambleton, P. & Martin, K. L. (1972). Methods for the assessment of microbial populations recovered from enclosed aerosols. Journal of General Microbiology 72, 117125.CrossRefGoogle Scholar
Strange, R. E. & Cox, C. S. (1976). Survival of dried and airborne bacteria. In The Survival of Vegetative Microbes (ed. Gray, T. R. G. & Postgate, J. R.), 26th Symposium of the Society for General Microbiology, pp. 111154. Cambridge: Cambridge University Press.Google Scholar
Wathes, C.M., Jones, C. D. R. & Webster, A. J. F. (1983). Ventilation, air hygiene and animal health. Veterinary Record 113, 554559.Google ScholarPubMed
Webb, S. J. (1959). Factors affecting the viability of airborne bacteria. I. Bacteria aerosolized from distilled water. Canadian Journal of Microbiology 5, 649669.Google Scholar