Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-22T06:19:28.742Z Has data issue: false hasContentIssue false

The survival of bacteria in dust. III. The effect of light on the survival of bacteria in dust

Published online by Cambridge University Press:  15 May 2009

O. M. Lidwell
Affiliation:
Medicial Research Council Group for Research in Industrial Physiology and the Common Cold Research Unit, from Harvard Hospital, salisbury
E. J. Lowbury
Affiliation:
Medicial Research Council Group for Research in Industrial Physiology and the Common Cold Research Unit, from Harvard Hospital, salisbury
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The effects of daylight, low-intensity ultra-violet radiation, fluorescent lighting, and tungsten-filament lighting on the survival of dust flora have been studied, at room humidities of about 60% and under dry conditions. The first three radiations all cause a significantly enhanced death-rate at room humidities for all the groups of organisms studied. The effect appears to be limited in extent and to be complete in about 10 days. The action of the radiations is much slower under dry conditions.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1950

References

REFERENCES

Bourdillon, R. B. & Lidwell, O. M. (1984). Spec. Rep. Ser. med. Res. Coun., Lond., no. 262, p. 173.Google Scholar
Buchbinder, L. (1942). Aerobiology (Publication of the American Association for the Advancement os Science, no. 17), p. 269. Washington.Google Scholar
Buchbinder, L., Solowey, M. & Phelps, E. B. (1941). J. Bact. 42, 353CrossRefGoogle Scholar
Downes, A. & Blunt, T. P. (1877). Proc. Roy. Soc. 26, 488.Google Scholar
Duggar, B. M. (1936). Biological Effects of Radiation, ch. 36. McGraw Hill.CrossRefGoogle Scholar
Dumbell, K. R., Lovelock, J. E. & Lowbury, E. J. (1984). Lancet, 2, 183.Google Scholar
Garrod, L. P. (1944). Brit. med. J. 1, 245.CrossRefGoogle Scholar
Hollaender, A., Du Buy, H. G., Ingraham, J. S. & Wheeler, S. M. (1944). Science, 99, 130.CrossRefGoogle Scholar
King, H. K. & Alexander, Hazel (1948). J. gen. Microbiol. 2, 315.CrossRefGoogle Scholar
Leighton, W. G. & Forbes, G. S. (1930). J. Amer. chem. Soc. 52, 3139.CrossRefGoogle Scholar
Lidwell, O. M. & Lowbury, E. J. (1950 a). J. Hyg., Camb., 48, 6.CrossRefGoogle Scholar
Lidwell, O. M. & Lowbury, E. J. (1950 b). J. Hyg., Camb., 48, 21.CrossRefGoogle Scholar
Lidwell, O. M. & Lowbury, E. J. (1950 c). J. Hyg., Camb., 48, 38.CrossRefGoogle Scholar
Lowbury, E. J. (1950). J. Hyg., Camb., 48, 1.CrossRefGoogle Scholar
Wells, W. F. & Wells, M. W. (1936). J. Amer. med. Ass. 107, 1698.CrossRefGoogle Scholar