Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-22T11:35:38.589Z Has data issue: false hasContentIssue false

Studies with inactivated equine influenza vaccine: 2. Protection against experimental infection with influenza virus A/equine/Newmarket/79 (H3N8)

Published online by Cambridge University Press:  15 May 2009

Jennifer Mumford
Affiliation:
Equine Virology Unit, Animal Health Trust, Lanwades Park, Kennett, Newmarket, Suffolk, CB8 7DW
J. M. Wood
Affiliation:
Division of Viral Products, National Institute for Biological Standards and Control, Holly Hill, London NW3 6RB
A. M. Scott
Affiliation:
Equine Virology Unit, Animal Health Trust, Lanwades Park, Kennett, Newmarket, Suffolk, CB8 7DW
C. Folkers
Affiliation:
Animal Health Division, Duphar BV, C. J. van Houtenlaan 36, 1381 cp Weesp, Holland
G. C. Schild
Affiliation:
Division of Viral Products, National Institute for Biological Standards and Control, Holly Hill, London NW3 6RB
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Forty ponies immunized with inactivated virus vaccine containing A/equine/Miami/63 (H3N8) virus and six unvaccinated, seronegative ponies were experimentally challenged with a representative of recent equine H3N8 virus isolates, A/equine/Newmarket/79. All unvaccinated ponies became infected as judged by virus excretion, febrile responses and antibody responses, but only two of the vaccinated ponies were fully protected. Pre-challenge antibody levels to A/Newmarket/79 virus detected by single radial haemolysis (SRH) correlated well with the degree of clinical protection but the levels required for complete protection (SRH zones > 65 mm2) were high. The importance of these results in relation to conventional vaccination procedures against equine influenza is discussed.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1983

References

REFERENCES

Blaskovic, D., Szanto, K., Kapitancik, B., Lesso, J., Lackovic, V. & Skarda, R. (1966). Experimental pathogenesis of A/Equi 1 Influenza virus infection in horses. Acta Virologica 10, 513520.Google ScholarPubMed
Bockman, J. (1977). Comparative measurement of influenza virus antibody in horse sera by the single radial haemolysis test and the haemagglutination test. Zentralblatt für Bakteriologie Parasitenkunde u. Infektionskrankheiten and Hygiene (Abteilung 1, Originale Reihe B), 238, 18.Google Scholar
Bryans, J. T. (1973). The antibody response of horses to two inactivated oil adjuvanted equine influenza virus vaccines. Symposia Series in Immunobiological Standardisation 20, 311317.Google Scholar
Burrows, R. (1968). Laboratory diagnosis of some virus infections on the upper respiratory tract of the horse. Equine Veterinary Journal 1, 3238.CrossRefGoogle Scholar
Burrows, R. (1979). Equine influenza viruses – field and experimental observations of infection and vaccination. Proceedings of the Twenty-Fourth Annual Convention of the American Association of Equine Practitioners, St Louis, Missouri, USA 1978, p. 3748.Google Scholar
Burrows, R., Denyer, M., Goodridge, D. & Hamilton, F. (1981). Field and laboratory studies of equine influenza viruses isolated in 1979. Veterinary Record 109, 353356.CrossRefGoogle ScholarPubMed
Burrows, R., Goodridge, D., Denyer, M., Hutchings, G. & Frank, C. J. (1982). Equine influenza infections in Great Britain, 1979. Veterinary Record 100, 494497.CrossRefGoogle Scholar
Burrows, R. & Denver, M. (1982). Antigenic properties of some equine influenza viruses. Archives of Virology 73, 1524.CrossRefGoogle ScholarPubMed
Couch, R. B., Kasel, J. A., Six, H. R. & Cate, T. R. (1981). The basis for immunity to influenza in man. In Genetic Variation among Influenza Viruses (ed. D. P., Nayak), pp. 535546. Academic Press: New York, London.CrossRefGoogle Scholar
Couch, R. B., Webster, R. G., Kasel, J. A. & Cate, T. R. (1979). Efficacy of purified subunit vaccines and relation to the major antigenic determinants on the haemagglutinin molecule. Journal of Infectious Diseases 140, 553559.CrossRefGoogle Scholar
Davenport, F. M., Hennessy, A. V. & Francis, T. (1953). Epidemiologic and immunologic significance of age distribution of antibody to antigenic variants of influenza virus. Journal of Experimental Medicine 98, 641656.CrossRefGoogle ScholarPubMed
Doll, E. R. (1961). Influenza of horses. American Review of Respiratory Diseases 83, 4850.Google Scholar
Fontaine, M. P., Fontaine, M., Aymard, M. & Nafti, K. (1981). Technique d'hemolyse radiale pour la mesure des anticorps anti-influenza chez le cheval. Bulletin de L'academie de France 54, 105112.CrossRefGoogle Scholar
Frerichs, C. C., Frerichs, G. N. & Burrows, R. (1973). Some aspects of the haemagglutination inhibition test used in serological studies of equine influenza. International Symposium on Influenza Vaccines for Man and Horses, London 1972; Symposia Series in Immunobiological Standardisation 20, 338346.Google Scholar
Haaheim, L. R. & Schild, G. C. (1980). Antibodies to the strain-specific and cross reactive determinants of the haemagglutinin of influenza H3N8 viruses. Acta pathologica et microbiologica scandinavica (section B) 88, 335340.Google Scholar
Hamilton, F. (1978). Studies on the single radial haemolysis technique for the assay of equine influenza virus, adenovirus and equine herpesvirus 1 antibodies. In Proceedings of 4th International Conference on Equine Infectious Diseases, Lyons 1976, pp. 481486. Princetown, N. J.Veterinary Publications.Google Scholar
Hinshaw, V. S., Naeve, C. W., Webster, R. G., Douglas, A., Skehel, J. J. & Bryans, J. (1982). Analysis of antigenic variation in equine 2 influenza A viruses. Bulletin of the World Health Organisation. (In the Press.)Google Scholar
John, T. J. & Fulginiti, V. A. (1966). Parainfluenza 2 virus. Increase in haemagglutinin titre on treatment with Tween-80 and ether. Proceedings of the Society for Experimental Biology and Medicine, New York 121, 109111.CrossRefGoogle ScholarPubMed
Kasel, J. A., Hume, E. B., Fulk, R. V., Togo, Y., Huber, M. & Hornick, R. B. (1969). Antibody responses in nasal secretions and serum of elderly persons following local or parenteral administration of inactivated influenza vaccine. Journal of Immunology 102, 555562.CrossRefGoogle ScholarPubMed
Klingeborn, B., Rockborn, G. & Dinter, Z. (1980). Significant antigenic drift within the influenza equi-2 subtype in Sweden. Veterinary Record 106, 363364.CrossRefGoogle ScholarPubMed
Kumanimodo, T. & Akiyama, Y. (1975). Immuno-effect of serum and nasal antibody against experimental inoculation with influenza A-Equi-2 virus. Experimental Reports of Equine Health Laboratory, no. 12. 4452.Google Scholar
Lief, F. S. & Cohen, D. (1965). Equine influenza. Studies of the virus and of antibody patterns in convalescent, interepidemic and post-vaccination sera. American Journal of Epidemiology 82, 225246.CrossRefGoogle Scholar
Lin, Y. L. & Askonas, B. A. (1981). Biological properties of an influenza A virus specific T-killer cell clone; inhibition of virus replication in vivo and induction of delayed type hypersensitivity reactions. Journal of Experimental Medicine 154, 225.CrossRefGoogle Scholar
Oxford, J. S., Haaheim, L. R., Slepushkin, A., Werner, J., Kuwert, E. & Schild, G. C. (1981). Strain specificity of serum antibody to the haemagglutinin of influenza A (H3N8) viruses in children following immunization or natural infection. Journal of Hygiene 86, 1726.CrossRefGoogle ScholarPubMed
Oxford, J. S., Schild, G. C., Potter, C. W. & Jennings, R. (1979). The specificity of the anti-haemagglutinin antibody responses induced in man by inactivated influenza vaccines and by natural infection. Journal of Hygiene 82, 5161.CrossRefGoogle Scholar
Powell, D. G., Burrows, R., Spooner, P., Mumford, J. & Thomson, G. (1977). Field Observations on Influenza vaccination among horses in Britain 1971–1976. International Symposium on Influenza Immunization (II), Geneva 1977. Development of Biological Standardization 39, 347352.Google ScholarPubMed
Rouse, B. T. & Ditchfield, W. J. B. (1970). The response of ponies to myxovirus influenza A-Equi-2. III. The protective effect of serum and nasal antibody against experimental challenge. Research in Veterinary Science 11, 503507.CrossRefGoogle Scholar
Schild, G. C., Smith, J. W. G., Cretescu, L., Newman, R. W. & Wood, J. M. (1977). Strain-specificity of antibody to haemagglutinin following inactivated A/Port Chalmers/1/73 vaccine in man: evidence for a paradoxical strain-specific antibody response. Developments in Biological Standardization 39, 273281.Google ScholarPubMed
Van Oirschot, J. T., Masurel, N., Huffels, A. D. N. H. J. & Anker, W. J. J. (1981). Equine influenza in the Netherlands during the winter of 1978–1979; antigenic drift of the A-equi-2 virus. Veterinary Quarterly 3, 8084.CrossRefGoogle ScholarPubMed
Virelizier, J. L. (1975). Host defences against influenza virus; the role of anti-haemagglutinin antibody. Journal of Immunology 115, 434439.CrossRefGoogle Scholar
WHO (1982). Equine influenza surveillance. World Health Organization Weekly Epidemiological Record 15, 119.Google Scholar
Wood, J. M., Schild, G. C., Folkers, C., Mumford, J. A. & Newman, R. W. (1983 a). Standardization of inactivated equine influenza vaccines by single-radial-immunodiffusion. Journal of Biological Standardization. (In the Press.)CrossRefGoogle ScholarPubMed
Wood, J. M., Mumford, J. A., Folkers, C., Scott, A. M. & Schild, G. C. (1983 b). Studies with equine influenza vaccine; 1. Serological responses of ponies to graded doses of vaccine. Journal of Hygiene 90, 371384.CrossRefGoogle ScholarPubMed
Yamagishi, H., Nagamine, T., Shimoda, K., Ide, S., Igarashi, Y., Yoshioka, I. & Matumoto, M. (1982). Comparative measurement of equine influenza virus antibodies in horse sera by single radial haemolysis, neutralisation and haemagglutination inhibition tests. Journal of Clinical Microbiology 15, 660–062.CrossRefGoogle Scholar
Yap, K. L. & Ada, G. L. (1978). Cytotoxic T cells in the lungs of mice with an influenza A virus. Scandinavian Journal of Immunology 7, 73.CrossRefGoogle ScholarPubMed