Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-22T15:50:47.266Z Has data issue: false hasContentIssue false

Studies on respiratory immunization with tetanus toxoid: The role of adjuvants

Published online by Cambridge University Press:  15 May 2009

H. C. Bartlema
Affiliation:
Medical Biological Laboratory TNO, 139 Lange Kleiweg, Rijswijk 2100, The Netherlands
Rientsje Braunius
Affiliation:
Medical Biological Laboratory TNO, 139 Lange Kleiweg, Rijswijk 2100, The Netherlands
Lily Hölscher
Affiliation:
Medical Biological Laboratory TNO, 139 Lange Kleiweg, Rijswijk 2100, The Netherlands
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Aerosol vaccination of mice with purified plain tetanus toxoid does not induce an immune response unless a suitable adjuvant is added.

Aluminium phosphate is without effect by aerosol treatment. Killed cells of Klebsiella pneumoniae, although effective, are unsatisfactory owing to the long inhalation period needed.

Killed Bordetella perussis cells were found to be an excellent adjuvant. A single aerosol treatment with a toxoid-B. pertussis mixture during a moderate exposure period evoked a considerable immune response. With repeated aerosol treatment of primed mice the addition of adjuvant is not required; booster treatment with plain toxoid is at least as effective.

Extracts from B. pertussis cells exert as good an adjuvant effect as the whole-cell vaccine. The remaining cell-wall debris also appears to be an active adjuvant.

In combination with constant doses of adjuvant (108B. pertussis cells), the 50 % protective doses (ED 50) of toxoid were determined by inhalation and by s.c. injection and were found to be 0·1875 and 0·0625 LFU respectively. This would imply that, as a result of the adjuvant action, the s.c. ED 50 is reduced by approximately a factor of 20; whereas the respiratory ED 50 is decreased by at least a factor of 100.

It is suggested that the much more pronounced adjuvant activity in aerosol immunization is associated with the induction of strong cell-mediated hypersensitivity in the respiratory tract.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1972

References

REFERENCES

Allison, A. C. & Davies, A. J. S. (1971). Requirement of thymus-dependent lymphocytes for potentiation by adjuvants of antibody formation. Nature, London 233, 330.CrossRefGoogle ScholarPubMed
Bartlema, H. C. & Braunius, R. (1969). Partial unresponsiveness of mice to subcutaneous tetanus vaccination following aerosol treatment with plain toxoid. Nature, London 222, 1289.CrossRefGoogle ScholarPubMed
Cohn, M. (intr.) (1969). Speculation on cellular and molecular mechanisms involved in immunological responsiveness and tolerance. In Immunological Tolerance (ed. by Landy, M. and Braun, W.). p. 281. New York, London: Academic Press.Google Scholar
Dodd, R. Y. (1970). Cellular immunity to Listeria monocytogenes induced by sensitization and challenge with bovine gamma globulin. Infection and Immunity 1, 511.CrossRefGoogle ScholarPubMed
Dresser, D. W. (1968). An assay for adjuvanticity. Clinical and Experimental Immunology 3, 877.Google ScholarPubMed
Farthing, J. R. & Holt, L. B. (1962). Experiments designed to determine the mechanism of the adjuvant activity of Gram-negative organisms upon antibody production. Journal of Hygiene 60, 411.Google ScholarPubMed
Fontanges, R. (1966). L'immunisation par aérosols. Revue des corps de santé 7, 123.Google Scholar
Fontanges, R., Cornet, A., Brunat, W. R., Jacob, F., Monteil, H. & Ferry, S. (1970). L'immunisation par aérosols. VI. Vaccination des singes babouins par l'anatoxine diphtérique lyophilisée. Annales de l'Instutut Pasteur 119, 172.Google Scholar
Fournier, J. M. (1969). L'immunisation par aérosols d'anatoxines tétanique et diphtérique lyophilisées. Thesis for degree of M.D., University of Lyon.Google Scholar
Frei, P. C., Benacerraf, B. & Thorbecke, G. J. (1965). Phagocytosis of the antigen, a crucial step in the induction of the primary response. Proceedings of the National Academy of Sciences, U.S.A. 53, 20.CrossRefGoogle ScholarPubMed
Guyton, A. C. (1947). Measurements of respiratory volumes of laboratory animals. American Journal of Physiology 150, 70.CrossRefGoogle ScholarPubMed
Hemert, P. van, Wezel, A. L. van & Cohen, H. H. (1964). Preparation of soluble pertussis vaccine. Nature, London 203, 774.CrossRefGoogle ScholarPubMed
Henderson, D. W. (1952). An apparatus for the study of airborne infection. Journal of Hygiene 50, 53.CrossRefGoogle Scholar
Leclercq, Ph. (1971). Etude chez la souris du pouvoir adjuvant d'une endotoxine bactérienne au cours de la vaccination par aérosols d'anatoxine tétanique lyophilisée. Thesis for the degree of M.D., University of Lyon.Google Scholar
Litchfield, J. Th. Jr. & Wilcoxon, F. W. (1949). A simplified method for evaluating dose-effect experiments. Journal of Pharmacology and Experimental Therapeutics 96, 100.Google ScholarPubMed
May, K. R. (1945). The cascade impactor; an instrument for sampling coarse aerosols. Journal of Scientific Instruments 22, 187.CrossRefGoogle Scholar
Mitchell, J. & Nossal, G. J. V. (1966). Mechanisms of induction of immunological tolerance. I. Localization of tolerance-inducing antigen. Australian Journal of Experimental Biology and Medical Science 44, 211.CrossRefGoogle ScholarPubMed
Mitchison, N. A. (1964). Induction of immunological paralysis in two zones of dosage. Proceedings of the Royal Society, Series B 161, 275.Google ScholarPubMed
Munoz, J. (1964). Effect of bacteria and bacterial products on antibody response. Advances in Immunology 4, 397.CrossRefGoogle Scholar
Perkins, J. C., Tucker, D. N., Sknopf, H. L., Wenzel, R. P., Hornick, R. B., Kapikian, A. Z. & Chanock, R. M. (1969). Evidence for protective effect of an inactivated rhinovirus vaccine administered by the nasal route. American Journal of Epidemiology 90, 319.CrossRefGoogle ScholarPubMed
Roitt, I. M., Greaves, M. F., Torrigiani, G., Brostoff, J. & Playfair, J. H. L. (1969). The cellular basis of immunological responses–A synthesis of some current views. Lancet ii, 367.CrossRefGoogle Scholar
Stavitsky, A. B. (1954). Micromethods for the study of proteins and antibodies. I. Procedure and general applications of hemagglutination and hemagglutination-inhibition reactions with tannic acid and protein-treated red blood cells. Journal of Immunology 72, 360.CrossRefGoogle Scholar
Waldman, R. H., Kasel, J. A., Fulk, R. V., Togo, Y., Hornick, R. B., Heiner, G. G., Dawkins, A. T. Jr. & Mann, J. J. (1968). Influenza antibody in human respiratory secretions after subcutaneous or respiratory immunization with inactivated virus. Nature, London 218, 594.CrossRefGoogle Scholar
Waldman, R. H., Mann, J. J. & Small, P. A. (1969). Immunization against influenza. Prevention of illness in man by aerosolized inactivated vaccine. Journal of the American Medical Association 207, 520.CrossRefGoogle Scholar
Wigley, F. M., Wood, S. H. & Waldman, R. H. (1969). Aerosol immunization of humans with tetanus toxoid. Journal of Immunology 103, 1096.CrossRefGoogle ScholarPubMed
Wolf, H. W., Skaliy, P., Hall, L. B., Harris, M. M., Decker, H. M., Buchanan, L. M. & Dahlgren, Ch.M. (1959). Sampling microbiological aerosols. Public Health Monograph no. 60. U.S. Public Health Service.Google Scholar
Yamashiroya, H. M., Ehrlich, R. & Magis, J. M. (1966). Aerosol vaccination with tetanus toxoid. Bacteriological Reviews 30, 624.CrossRefGoogle ScholarPubMed