Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-25T19:24:16.789Z Has data issue: false hasContentIssue false

Studies on heat inactivation of hepatitis A virus with special reference to shellfish: Part 1. Procedures for infection and recovery of virus from laboratory-maintained cockles

Published online by Cambridge University Press:  19 October 2009

Judith Millard
Affiliation:
Virus Reference Laboratory, Central Public Health Laboratory, Colindale Avenue, Colindale, London NW9 5HT
Hazel Appleton
Affiliation:
Virus Reference Laboratory, Central Public Health Laboratory, Colindale Avenue, Colindale, London NW9 5HT
J. V. Parry
Affiliation:
Virus Reference Laboratory, Central Public Health Laboratory, Colindale Avenue, Colindale, London NW9 5HT
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The consumption of bi-valve mollusean shellfish has been associated with outbreaks of viral gastroenteritis and hepatitis A. Investigations were undertaken to determine the heat inactivation conditions necessary to render shellfish such as cockles safe for the consumer. Conditions for the laboratory maintenance of live cockles are described. In preliminary experiments either poliovirus (106 TCID50/ml seawater) or hepatitis A virus (HAV) (approx. 104 RFU/ml seawater) was introduced into the shellfish tank. Following 48 h filter feeding, virus was recovered from cockles using an adsorption-elution extraction procedure. Titres of virus recovered ranged from 104 to 105 TCID50/ml of shellfish extract for poliovirus and from 103 to 105 RFU/ml of shellfish extract for HAV. Active ingestion of the virus from the seawater was demonstrated by recovering virus from within cockle guts. To quantify recovered HAV, end-point dilutions and an adaptation of a radioimmunofocus assay (RIFA) were compared. The tests were of similar sensitivity but the RIFA has the advantage of being relatively rapid, shortening the time taken to complete an experiment by as much as 4 weeks.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1987

References

REFERENCES

Appleton, H., Palmer, S. R. & Gilbert, R. J. (1981). Foodborne gastroenteritis of unknown aetiology: a virus infection? British Medical Journal 282, 18011802.Google ScholarPubMed
Appleton, H. & Pereira, M. S. (1977). A possible virus aetiology in outbreaks of food-poisoning from cockles. Lancet i, 780781.CrossRefGoogle Scholar
Ayres, P. A. (1979). Heat Processing of Cockles. Laboratory Leaflet no. 46, pp. 114. Ministry of Agriculture, Fisheries and Food Directorate of Fisheries Research. Lowestoft.Google Scholar
Bostock, A. D., Mepham, P., Phillips, S., Skidmore, S. & Hambling, M. H. (1979). Hepatitis A infection associated with the consumption of mussels. Journal of Infection 1, 171172.Google Scholar
Dahling, D. R., Berg, G. & Berman, D. (1974). BGM, a continuous cell line more sensitive than primary rhesus and African green kidney cells for the recovery of viruses from water. Health Laboratory Science 11, 275282.Google ScholarPubMed
Feingold, A. O. (1973). Hepatitis from eating steamed clams. Journal of the American Medical Association 225, 526527.CrossRefGoogle ScholarPubMed
Flehmig, B. (1980). Hepatitis A virus in cell culture: 1. Propagation of different Hepatitis A isolates in a foetal rhesus monkey kidney cell line (FRhK-4). Medical Microbiology and Immunology 168, 239248.CrossRefGoogle Scholar
Frösner, G. G. (1982). Züchtung des Hepatitis-A-Virus in Gewebekultur: Möglichkeit zur Virusproduktion für Impfstoffe und Testzwecke, zur Untersuchung von Patienten auf Infektiosität und zur Prüfung von Desinfektionsmitteln. Öffentliche Gesundheitswen 44, 370373.Google Scholar
Gerba, C. P. & Goyal, S. M. (1978). Detection and occurrence of enteric viruses in shellfish: A review. Journal of Food Protection 41, 743754.CrossRefGoogle ScholarPubMed
Johnson, K. M., Cooper, R. C. & Straure, D. C. (1981). Procedure for recovery of enteroviruses from the Japanese cockle Tapes Japonicum. Applied and Environmental Microbiology 41, 932935.CrossRefGoogle Scholar
Kaplan, A. S. & Melnick, J. L. (1952). Effect of milk and cream on the thermal inactivation of human poliomyelitis virus. American Journal of Public Health 42, 525534.CrossRefGoogle ScholarPubMed
Koff, R. S. & Sear, H. S. (1967). Internal temperature of steamed clams. New England Journal of Medicine 276, 737739.Google Scholar
Lemon, S. M., Binn, L. N. & Marchwicki, R. H. (1983). Radioimmunofocus assay for quantitation of hepatitis A virus in cell cultures. Journal of Clinical Microbiology 17, 834839.Google Scholar
O'Mahony, M. C., Gooch, C. D., Smyth, D. A., Thrussell, A. J., Bartlell, C. L. R. & Noah, N. D. (1983). Epidemic hepatitis A from cockles. Lancet i, 518520.Google Scholar
Parry, J. V. & Mortimer, P. P. (1984). The heat sensitivity of hepatitis A virus determined by a simple tissue culture method. Journal of Medical Virology 14, 277283.CrossRefGoogle ScholarPubMed
Peterson, D. A., Wolfe, L. G., Larkin, E. P. & Deinhardt, F. W. (1978). Thermal treatment and infectivity of hepatitis A virus in human feces. Journal of Medical Virology 2, 201206.CrossRefGoogle ScholarPubMed
Portnoy, B. L., Mackoviak, P. A., Caraway, C. T., Walker, J. A., McKinley, T. W. & Klein, C. A. (1975). Oyster-associated hepatitis: failure of the shellfish certification programmes to prevent outbreaks. Journal of the American Medical Association 233, 10651068.Google Scholar
Provost, P. J. & Hilleman, M. R. (1979). Propagation of human hepatitis A virus in cell culture in vitro. Proceedings of the Society for Experimental Biology and Medicine 160, 213221.CrossRefGoogle ScholarPubMed
Reed, L. J. & Muench, H. (1938). A simple method of estimating fifty per cent endpoints. American Journal of Hygiene 27, 493497.Google Scholar
Richards, G. P., Golmintz, D., Green, D. L. & Babinchak, J. A. (1982). Rapid methods for the extraction and concentration of poliovirus from oyster tissues. Journal of Virological Methods 5, 285291.CrossRefGoogle ScholarPubMed
Roos, B. (1956). Hepatitis epidemic conveyed by oysters. Svenska Lakartidningen 53, 9891003.Google Scholar
Salacinski, P., Hope, J., McClean, C., Clement-Jones, V., Sykes, J., Price, J. & Lowry, P. J. (1979). A new, simple method which allows theoretical incorporation of radioiodine into proteins and peptides without damage. Journal of Endocrinology 81, 131.Google Scholar
Scheid, R., Deinhardt, F., Frösner, G., Abb, J., Zachoval, R. & Siegl, G. (1982). Inactivation of hepatitis A and B and risk of iatrogenic spread. In Viral Hepatitis, 1981 Symposium (eds. Szmuness, W., Alter, H. J. & Maynard, J. E.), pp. 627628. Philadelphia: Franklin Institute Press.Google Scholar
Siegl, G., Weitz, M. & Kronauer, G. (1984). Stability of Hepatitis A Virus. Intervirology 22, 218226.Google Scholar
Sobsey, M. D., Carrick, R. J. & Jensen, H. R. (1978). Improved methods for detecting enteric viruses in oysters. Applied and Environmental Microbiology 36, 121128.Google Scholar
Sockett, P. N., West, P. A. & Jacob, M. (1985). Shellfish and Public Health. PHLS Microbiology Digest 2, 2935.Google Scholar
Turnbull, P. C. B. & Gilbert, R. J. (1982). Fish and shellfish in Britain. In Adverse Effects of Foods (eds. Jelliffe, E. F. P. & Jelliffe, D. B.), pp. 297306. New York: Plenum Press.Google Scholar