Published online by Cambridge University Press: 08 November 2004
To clarify the determinants of vaccine trial power for non-typable Haemophilus influenzae, we constructed stochastic SIS models of infection transmission in small units (e.g. day-care centres) to calculate the equilibrium distribution of the number infected. We investigated how unit size, contact rate (modelled as a function of the unit size), external force of infection and infection duration affected the statistical power for detection of vaccine effects on susceptibility or infectiousness. Given a frequency-dependent contact rate, the prevalence, proportion of infections generated internally and the power to detect vaccine effects each increased slightly with unit size. Under a density-dependent model, unit size had much stronger effects. To maximize information allowing inference from vaccine trials, contact functions should be empirically evaluated by studying units of differing size and molecular methods should be used to help distinguish internal vs. external transmission.