Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-28T17:04:33.510Z Has data issue: false hasContentIssue false

The Significance of the Variation in Shape of Time-Survivor Curves

Published online by Cambridge University Press:  15 May 2009

E. R. Withell
Affiliation:
From the Department of Pharmacy and Biology, Central Technical College, Birmingham,
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The mean time-survivor curves of bacteria immersed in two phenolic disinfectants show the same variation of type as the individual curves, that is, (a) an exponential rate, (b) a lag phase followed by an exponential rate. The significance of all these curves and of others is discussed in the next part of the paper.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1942

References

REFERENCES

Arrhenius, S. (1915). Quantitative Laws in Biological Chemistry. 164 pp. London.Google Scholar
Arrhenius, S. & Madsen, , Th. (1903). Anwendung der physikalischen Chemie auf das Studium der Toxine und Antitoxine. Z. phys. Chem. 44, 7.CrossRefGoogle Scholar
Axelrod, , Aebersold, & Spear, (unpublished, Jan. 1941). Cited in Lea, Haines & Bretscher (1941).Google Scholar
Ballner, (1902). Experimentelle Studien über die Desinfectionskraft gesättigter Wasserdampfe bei verschiedenen Siedetemperaturen. S.B. Akad. Wiss. Wien, 111, Abt. 3, 97.Google Scholar
Baker, S. L. & Nanavutty, S. H. (1929). A quantitative study of the effect of ultraviolet rays on the bacteriophage. Brit. J. Exp. Path. 10, 46.Google Scholar
Bigklow, W. D. & Esty, J. R. (1920). The thermal death point in relation to time of typical thermophilic organisms. J. Infect. Dis. 27, 602.CrossRefGoogle Scholar
Bittenbender, W. A., Digering, E. F. & Tetrault, P. A. (1939). Bactericidal properties of commercial antiseptics. Industr. Engng Chem. 31, 742.CrossRefGoogle Scholar
Bliss, C. I. (1937). The calculation of the time mortality curve. Ann. Appl. Biol. 24, 815.CrossRefGoogle Scholar
Bliss, C. I. (1938). The determination of the dosage mortality curve from small numbers. Quart. J. Pharm. 11, 192.Google Scholar
Boycott, A. E. (1920). The killing of tadpoles by heat. J. Path. Bact. 29, 237.Google Scholar
Brooks, S. C. (1918). A theory of the mechanism of disinfection, hemolysis and similar processes. J. Gen. Physiol. 1, 61.CrossRefGoogle ScholarPubMed
Burbury, Y. M. (1928). Third Progress Report, Foot and Mouth Disease Research Committee, p. 88.Google Scholar
Chick, H. (1908 a). An investigation of the laws of disinfection. J. Hyg., Camb., 8, 92.CrossRefGoogle ScholarPubMed
Chick, H. (1908 b). The death rate of bacteria under the action of disinfectants. 78th Rep. Brit. Ass. Adv. Sci. p. 901.Google Scholar
Chick, H. (1910). The process of disinfection by chemical agencies and hot water. J. Hyg., Camb., 10, 237.CrossRefGoogle ScholarPubMed
Chick, H. (1912). The factors conditioning the velocity of disinfection. Reprinted from Original Communications, 8th International Congress of Applied Chemistry, 26, 167.Google Scholar
Chick, H. (1913). The bactericidal properties of blood serum. J. Hyg., Camb., 12, 414.Google Scholar
Chick, H. (1930). The Theory of Disinfection. A System of Bacteriology in Relation to Medicine, 1, 179. Med. Res. Coun.Google Scholar
Chick, H. & Martin, C. J. (1908). The principles involved in the standardization of disinfectants. J. Hyg., Camb., 8, 655.Google ScholarPubMed
Clark, A. J. (1933). The Mods of Action of Drugs on Cells. 296 pp. London: Edward Arnold and Co.Google Scholar
Clark, & Gage, (1903). 34th A Annual Report of the State Board of Health, Massachusetts. Quoted by Chick (1910, p. 280).Google Scholar
Coblentz, W. W. & Fulton, H. R. (1924). A radioactive investigation of the germicidal action of ultra-violet radiation. Sci. Pap. U.S. Bur. Stand. 19, no. 495, 641.Google Scholar
Cohen, B. (1922). Disinfection studies. The effects of temperature and hydrogen-ion concentration upon the viability of Bact. coli and Bact. typhosus in water. J. Bact. 7, 183.CrossRefGoogle Scholar
Darwin, N. & Blackmann, (1909). The death rate of cells of higher plants in fatal conditions. Rep. 78th Meeting Brit. Ass. Adv. Sci. p. 902.Google Scholar
Davis, H. (1940). The effect on bacteria of substances in use for the preparation of solutions for parenteral administration. Quart. J. Pharm. 8, 32.Google Scholar
Dienes, L. (1911). Zeigen die Blutkörperchen einer Blutkörperchenaufechwemmung bei der Haemolyse messbare individuelle Verschiedenheiten? Biochem. Z. 33, 268.Google Scholar
Dreyer, G. & Hanssen, O. (1907). Sur la loi de la vitesse d'hémolyse des hematics sous l'action de la lumière, de la chaleur, et de quelques corps hémolitiques. C.R. Acad. Sci., Paris, 145, 371.Google Scholar
Eijkmann, C. (1908). Die Ueberlebungscurve bei Abtötung der Bakterien durch Hitze. Biochem. Z. 11, 12.Google Scholar
Eijkmann, C. (1909). Investigations on the subject of disinfection. Verh. K. Akad. Amst. 2 T, 11.Google Scholar
Eijkmann, C. (1912). Folia Microbiol., Delft, 1, 1.Google Scholar
Falk, I. S. (1923). Abstr. Bact. 7, 66.Google Scholar
Falk, I. S. & Winslow, C. E. A. (1926). A contribution to the dynamics of toxicity and the theory of disinfection. J. Bact. 11, 1.CrossRefGoogle Scholar
Friedenthal, H. (1919). Absolute und relative Desinfectionskraft von Elementen und chemischen Verbindungen. Biochem. Z. 94, 47.Google Scholar
Fulmer, E. I. & Buchanan, R. E. (1923). Studies on toxicity. J. Gen. Physiol. 6, 77.CrossRefGoogle ScholarPubMed
Gaddum, J. H. (1933). Reports on biological standards. III. Methods of biological assay depending on a quantal response. Spec. Rep. Ser. Med. Res. Coun., Lond., no. 183,Google Scholar
Gaddum, J. H. (1937). Discussion on the chemical and physical basis of pharmacological action. Proc. Roy. Soc. B, 121, 598.Google Scholar
Gaddum, J. H. (1940). Pharmacology. 407 pp. Oxford University Medical Press.Google Scholar
Galton, F. (1879). The geometric mean in vital and social statistics. Proc. Roy. Soc. 29, 365.Google Scholar
Gates, F. L. (1929 a). A study of the bactericidal action of ultra-violet light. I. J. Gen. Physiol. 13, 231.CrossRefGoogle ScholarPubMed
Gates, F. L. (1929 b). A study of the bactericidal action of ultra-violet light. II. J. Gen. Physiol. 13, 249.CrossRefGoogle ScholarPubMed
Gates, F. L. (1930). A study of the bactericidal action of ultra-violet light. III. J. Gen. Physiol. 14, 31.CrossRefGoogle ScholarPubMed
Geppert, J. (1889). Zur Lehre von den Antisepticis. Berl. klin. Wschr. 26, 789.Google Scholar
Gladstone, G. P. & Fildes, P. (1940). A simple culture medium for general use without meat extract or peptone. Brit. J. Exp. Path. 21, 161.Google Scholar
Glynn, E., Powell, M., Rees, A. A. & Cox, G. L. (1913). Standardization of bacterial vaccines. J. Path. Bact. 18, 379.CrossRefGoogle Scholar
Goedrich, P. (1938). Increase of bactericidal action of germicides by variation of pH. J. Amer. Pharm. Ass. 27, 1233.Google Scholar
Groves, J. F. (1917). Temperature and life duration of seeds. Bot. Gaz. 63, 169.CrossRefGoogle Scholar
Habermann, S. & Ellsworth, L. D. (1940). Lethal and dissociative effects of X-rays on bacteria. J. Bact. 40, 483.CrossRefGoogle Scholar
Harvey, H. W. (1909). The action of poisons on Chlamydomonas and other vegetable cells. Ann. Bot., Land., 23, 181.CrossRefGoogle Scholar
Heller, G. (1941). A quantitative study of environmental factors involved in survival and death of bacteria in the desiccated state. J. Bact. 41, 109.CrossRefGoogle ScholarPubMed
Hemmingsen, A. M. (1933). The accuracy of insulin assay on white mice. Quart. J. Pharm. 6, 39.Google Scholar
Hemmingsen, A. M. (1934). A statistical analysis of the differences in body size of related species. Vidensk. Medd. naturh. Foren. Kbh. 98, 125.Google Scholar
Henri, V. (1905). Étude de la loi de la vitesse d’hémolyse des hématics de poulet par le serum de chien. C.R. Soc. Biol., Paris, 58, 37.Google Scholar
Heřćik, F. (1936). Action of ultra-violet light on spores and vegetative forms of B. megatherium sp. J. Gen. Physiol. 20, 589.CrossRefGoogle Scholar
Hewlett, R. T. (1909). Milroy Lectures on Disinfectants. Lancet, 1, 741, 815, 889.Google Scholar
Hollaender, A. & Claus, W. D. (1936). The bactericidal effect of ultra-violet radiations on E. coli in liquid suspensions. J. Gen. Physiol. 19, 753.CrossRefGoogle Scholar
Hollaender, A. & Duggar, B. M. (1936). The irradiation of plant viruses and of microorganisms with monochromatic light. III. Proc. Nat. Acad. Sci., Wash., 22, 19.CrossRefGoogle ScholarPubMed
Holweck, F. (1929). Production de rayons X monochromatiques de grande longueur d’onde. Action quantique sur les microbes. C.R. Acad. Sci., Paris, 188, 197.Google Scholar
Ikéda, K. (1897). Die chemische Grundlage der Lehre von der Giftwirkung und Desinfektion. Z. Hyg. InfektKr. 25, 95.Google Scholar
Irwin, J. O. (1937). Statistical methods applied to biological assays. J. Roy. Statist. Soc. Suppl. 4, 148.Google Scholar
Jennison, M. W. (1937). Relations between plate counts and direct microscopic counts of Eseherichia coli during the logarithmic growth period. J. Bact. 33, 461.CrossRefGoogle Scholar
Jennison, M. W. & Wadsworth, G. P. (1940). Evaluation of the errors involved in estimating bacterial numbers by the plating method. J. Bact. 39, 389.CrossRefGoogle ScholarPubMed
Joachjmoglu, G. (1923). Über den Einfluss der Wasserstoffionenkonzentration auf die antiseptische Wirkung des Sublimats. Biochem. Z. 134, 489.Google Scholar
Keysser, & Orstein, (1926). Das Optimum der Wasserstoffionenkonzentration (pH.) als wichtigster Desinfektorischer Faktor bei örtlichen und allgemeinen Infektionen und seine Bedeutung f¨r die Behandlung eitriger BauchfeUentzündungen. Klin. Wschr. 5, 404.CrossRefGoogle Scholar
Knaysi, G. (1935). A microscopical method of distinguishing dead from living bacterial cells. J. Bact. 30, 193.CrossRefGoogle ScholarPubMed
Krönig, B. & Paul, T. (1897). Die chemische Grundlage der Lehre von der Giftwirkung und Desinfektion. Z. Hyg. InfektKr. 25, 1.Google Scholar
Kuroda, T. (1926). Über den Einfluss der Wasserstoffionenkonzentration auf die antiseptische Wirkung des Sublimats. Biochem. Z. 169, 28.Google Scholar
Lacassagne, A. (1929). Action de rayons X de grande longueur d’onde, sur les microbes. C.R. Acad. Set., Paris, 188, 200.Google Scholar
Lea, D. E. & Haines, R. B. (1940). The bactericidal action of ultra-violet light. J. Hyg., Camb., 40, 162.CrossRefGoogle ScholarPubMed
Lea, D. E., Haines, B. B. & Bretscher, E. (1941). The bactericidal action of X-rays, neutrons, and radioactive radiations. J. Hyg., Camb., 41, 1.CrossRefGoogle ScholarPubMed
Lea, D. E., Haines, E. B. & Coulson, C. A. (1937). The mechanism of the bactericidal action of radioactive substances. Proc. Roy. Soc. B, 120, 47.Google Scholar
Lee, R. E. & Gilbert, C. A. (1918). Application of the mass law to the process of disinfection, being a contribution to the ‘mechanistic theory’, as opposed to the ‘vitalistic theory’. J. Phys. Chem. 22, 348.CrossRefGoogle Scholar
Liebermann, L. V. & Fennyvessey, B. V. (1912). Über den zeitlichen Verlauf der Hämolyse. Z. Immunforsch. 12, 417.Google Scholar
Lloyd, L. (1920). The habits of the glasshouse tomato moth, Hadena (Polio) oleracea, and its control. Ann. Appl. Biol. 7, 66.CrossRefGoogle Scholar
Loeb, J.. & Northrop, J. H. (1917). On the influence of food and temperature on the duration of life. J. Biol. Chem. 32, 103.CrossRefGoogle Scholar
Madsen, T. & Nyman, M. (1907). Zur Theorie der Desinfektion. I. Z. Hyg. InfektKr. 57, 388.CrossRefGoogle Scholar
Mioni, G. (1905). Influence de la quantité des globules et de la durée de la réaction sur les résultats de l’hémolyse. C.R. Soc. Biol., Paris, 42, 485.Google Scholar
Mioni, G. (1905). Ann. Inst. Pasteur, 19, 84.Google Scholar
Myers, (1929). Cited in Rahn (1930 a).Google Scholar
Norton, J. F. & Hsu, P. H., (1916). The physical chemistry of disinfection. J. Infect. Dis. 18, 180.CrossRefGoogle Scholar
Oothuisen, M. J. (1935). The effect of high temperature on the Confused Flour Beetle. Tech. Bull. Minn. Agric. Exp. Sta. no. 107.Google Scholar
Paul, T. (1909). Der ihemische Reactionsverlauf beim Absterben trockener Bakterien bei niederen Temperaturen. Biochem. Z. 18, 1.Google Scholar
Paul, T., Birstein, G. & Reuss, A. (1910). Beitrag zur Kinetik des Absterbens der Bakterien in Sauerstoff verschiedener Konzentration und bei verschiedenen Temperaturen. Biochem. Z. 25, 367.Google Scholar
Paul, & Prall, (1907). Die Wertbestimmung von Desinfektionsmitteln mit Staphylococcen, die bei der Temperatur der flussigen Luft aufbewahrt wurden. Arb. GesundhAmt., Berl., 26, 424.Google Scholar
Peters, R. A. (1920). Variations in the resistance of protozoon organisms to toxic agents. J. Physiol. 54, 260.CrossRefGoogle ScholarPubMed
Phelps, E. B. (1911). The application of certain laws of physical chemistry in the standardization of disinfection. J. Infect. Dis. 8, 27.CrossRefGoogle Scholar
Ponder, E. (1930). The form of the frequency distribution of red cell resistances to saponin. Proc. Boy. Soc. B, 106, 543.Google Scholar
Porodko, Th. M. (1926). Ber. dtsch. bot. Ges. 44, 71.Google Scholar
Pobodko, Th. M (1927). Ber. dtsch. bot. Ges. 45, 4.Google Scholar
Rahn, O. (1929). The size of bacteria as a cause of the logarithmic order of death. J. gen. Physiol. 13, 179.CrossRefGoogle ScholarPubMed
Rahn, O. (1930). The non-logarithmic order of death of some bacteria. J. Gen. Physiol. 13, 396.CrossRefGoogle ScholarPubMed
Rahn, O. (1931). A chemical explanation of variability in the growth rate. J. Gen. Physiol. 15, 257.CrossRefGoogle Scholar
Rapps, N. F. (1933). The bactericidal efficiency of chlorocresol and chlorozylenol. J. Soc. Chem. Ind. 52, 16 June, 175 T.Google Scholar
Reichenbach, H. (1911). Die Absterbeordnung der Bakterien und ihre Bedeutung für Theorie u. Praxis der Desinfektion. Z. Hyg. InfektKr. 69, 171.CrossRefGoogle Scholar
Salmonsen, C. J. & Dreyer, G. (1907). De la loi de l’effet hémolytique des rayons Becquerel. G.B. Acad. Sci., Paris, 144, 999.Google Scholar
Sattler, W. (1928). Untersuchungen über die Absterbegeschwindigkeit, die Warme beschleunigung und den Resistenzwechselpunkt einiger fiir den Molkereibetrieb wichtiger Bakterien unter veschiedenen Bedingungen und ihr Verhalten bei den Pasteurisierungstemperaturen und bei raschen Temperaturwechsel. Milchw. Forsch. 7, 100.Google Scholar
Smith-Henderson, J. (1921). The killing of Botrytis spores by phenol. Ann. Appl. Biol. 8, 27.CrossRefGoogle Scholar
Smith-Henderson, J.. (1923). The effect of heat on Botrytis spores. Ann. Appl. Biol. 10, 335.Google Scholar
Tamman, G. (1895). Zur Wirkung ungeformter Fermente. Z. phys. Chem. 18, 426.CrossRefGoogle Scholar
Trevan, J. W. (1927). The error of determining toxicity. Proc. Roy. Soc. B, 101, 483.Google Scholar
Vermast, P. G. F. (1921). Beitrag zur Theorie d. Desinfektion im Lichte der Meyer-Overton’sohen Lipoidtheorie. Biochem. Z. 125, 107.Google Scholar
Waterman, H. L. & Kuiper, P. (1924). Rec. trav. chim. Pays-Bos, 43, 232.Google Scholar
Waterman, H. I. & Kuiper, P. (1924). The antiseptic action of benzoic acid, salicylic acid, cinnamic acid and their salts. Rec. trav. chim. Pays-Bos, 43, 323.CrossRefGoogle Scholar
Watson, H. E. (1908). A note on the variation of the rate of disinfection, with change in concentration of disinfectant. J. Hyg., Camb., 8, 536.Google ScholarPubMed
Wilson, G. S. (1922). The proportion of, viable bacteria in young cultures, with special reference to the technique employed in counting. J. Bact. 1, 405.CrossRefGoogle Scholar
Withell, E. R. (1938). The evaluation of bactericidal action. Quart. J. Pharm. 9, 736.Google Scholar
Woerz, J. A. Cited in Rahn (1930 a).Google Scholar
Wyckoff, R. W. G. (1930). The killing of certain bacteria by X-rays. J. Exp. Med. 50, 435.CrossRefGoogle Scholar
Wyckoff, R. W. G. (1932). The killing of colon bacilli by ultra violet light. J. Gen. Physiol. 15, 351.CrossRefGoogle Scholar
Wyckoff, R. W. G. & Rivers, T. M. (1930). The effect of cathode rays on certain bacteria. J. Exp. Med. 51, 921.CrossRefGoogle ScholarPubMed
Yule, G. V. (1910). On the distribution of deaths with age when the causes of deaths act cumulatively, and similar frequency distributions. J. Boy. Statist. Soc. 73, 26.CrossRefGoogle Scholar
Ziegler, K. R. & Halvorsen, H. O. (1935). Application of statistics to problems, in bacteriology. IV. Experimental comparison of the dilution method, the plate count, and the direct count for the determination of bacterial populations. J. Bact. 29, 609.CrossRefGoogle ScholarPubMed