Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-22T15:05:22.314Z Has data issue: false hasContentIssue false

Sialic acid content and surface hydrophobicity of group B streptococci

Published online by Cambridge University Press:  15 May 2009

L. A. Teixeira
Affiliation:
Instituto de Microbiologia
A. M. S. Figueiredo*
Affiliation:
Instituto de Microbiologia
B. T. Ferreira
Affiliation:
Instituto de Microbiologia
V. M. L. Alves
Affiliation:
Instituto de Microbiologia
P. E. Nagao
Affiliation:
Instituto de Microbiologia
C. S. Alviano
Affiliation:
Instituto de Microbiologia
J. Angluster
Affiliation:
Instituto de Microbiologia
F. C. Silva-Filho
Affiliation:
Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Cidade Universitária, 21941, Rio de Janeiro, Brazil
L. C. Benchetrit
Affiliation:
Instituto de Microbiologia
*
*Corresponding author
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The sialic acid content and the cell-surface hydrophobicity index of 40 group B streptococci (GBS) strains were assessed. GBS isolated from invasive infections (virulent strains) presented an increased level of sialic acid content (1.4%) when compared with GBS isolated from asymptomatic patients (0.53%). Treatment of GBS strain 85634 with neuraminidase resulted in a decrease (about 25%) in the net negative surface charge as assessed by cell electrophoresis. This finding suggests that sialic acid residues are important anionogenic groups exposed on GBS cell surface. N-acetylneuraminic acid was the only sialic acid derivative characterized in the strain 85634 as evaluated by gas-liquid chromatography. GBS from different serotypes presented a hydrophobic index mean value of 0.9. Even though the sialic acid contributed effectively to the negative charge on GBS cell surface, no difference was observed in the hydrophobic index when virulent and avirulent strains were compared.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1993

References

REFERENCES

1.Baker, CJ. Kasper, DL. Group B streptococcal vaccines. Rev Infec Dis 1985; 7: 458–67.CrossRefGoogle ScholarPubMed
2.Rubens, CE, Wessels, MR, Heggen, LM, Kasper, DL. Transposon mutagenesis of type III group B streptococcus: correlation of capsule expression with virulence. Proc Natl Acad Sci USA 1987: 84: 7208–12.CrossRefGoogle ScholarPubMed
3.Teti, G, Tomasello, F, Chiofalo, MS, Orefici, G, Mastroeni, P. Adherence of group B streptococci to adult and neonatal epithelial cells mediated by lipoteichoic acid. Infect Immunol 1987; 55: 3057–64.CrossRefGoogle Scholar
4.Nealon, TJ. Mattingly, SJ. Role of cellular lipotheichoic acids in mediating adherence of serotype III strains of group B streptococci to human embryonic, fetal, and adult epithelial cells. Infect Immunol 1987; 43: 523–30.CrossRefGoogle Scholar
5.Wessels, MR, Rubens, CE, Benedi, VJ, Kasper, DL. Definition of a bacterial virulence factor: sialylation of group B streptococcal capsule. Proc Natl Acad Sci USA 1989; 86: 8983–7.CrossRefGoogle Scholar
6.Goldschmidt, JC Jr, Panos, C. Teichoic acids of Streptococcus agalactiae: Chemistry, cytotoxicity, and effect on bacterial adherence to human cells in tissue culture. Infect Immunol 1984; 43: 670–7.CrossRefGoogle ScholarPubMed
7.Chun, CSY. Brady, LJ. Boyle, MDP, Dillon, HC, Ayoub, EM. Group B streptococcal C protein-associated antigens: Association with neonatal sepsis. Infect Immunol 1991; 163: 786–91.Google Scholar
8.Lancefield, RC. A serological differentiation of specific types of bovine hemolytic streptococci (group B). J Exp Med 1934; 59: 441–58.CrossRefGoogle ScholarPubMed
9.Kamerling, JP, Makovitzky, J, Shauer, R, Vliegenthart, JFG, Wember, M. The nature of sialic acid in human lymphocytes. Biochim Biophys Acta 1982; 714: 351–4.CrossRefGoogle ScholarPubMed
10.Jourdian, GW, Dean, L, Roseman, S. The sialic acid. IX. A periodate-resorcinol method for the quantitative estimation of free sialic acids and their glycosides. J Biol Chem 1971; 246: 430–5.CrossRefGoogle Scholar
11.Kamerling, JP, Schauer, R. Uliegenthart, JFG, Hotta, K. Identification of sialic acid from egg jelly coat of the sea urchin Pseudo centrotus depressus (Okayama). Hoppe-Seyler's Z Physiol Chem 1980; 361: 1511–6.CrossRefGoogle Scholar
12.Buscher, HP, Casals-stenzel, J. Schauer, R. New sialic acids. Eur J Biochem 1974; 50: 7182.CrossRefGoogle ScholarPubMed
13.Chapman, JS, Georgopapadakou, NH. Routes of quinolone penetration in Escherichia coli. Antimicrob Agents Chemother 1988; 32: 438–42.CrossRefGoogle Scholar
14.Souto-Padron, T. De Souza, W. Sialicoglycoproteins and sialoglycolipids contribute to the negative surface charge of epimastigote and trypomastigote forms of Trypanosoma cruzi. Biochem Biophys Acta 1987; 814: 163–9.CrossRefGoogle Scholar
15.Shigeoka, AO, Rote, NS. Santos, JI, Hill, HR. Assessment of the virulence factors of group B streptococci: Correlation with sialic acid content. J Infec Dis 1983; 147: 857–63.CrossRefGoogle Scholar
16.Selander, RK, Musser, JM. Caugant, DA, Gilmour, MN, Whittam, TS. Population genetics of pathogenic bacteria. Microb Pathog 1987; 3: 17.CrossRefGoogle ScholarPubMed
17.Muser, JM, Mattingly, SJ, Quentin, R, Goudeau, A. Selander, RK. Identification of a high-virulent clone of type III Streptococcus agalactiae (group B Streptococcus) causing invasive neonatal disease. Proc Natl Acad Sci USA 1989; 86: 4731–5.CrossRefGoogle Scholar
18.McGuinness, BT, Clarke, IN. Lambden, PR, et al. Point mutation in meningococcal por A gene associated with increased endemic disease. Lancet 1991; 337: 514–7.CrossRefGoogle Scholar
19.Bar-Ness, R, Avrahamy, N, Matsuyama, T, Rosenberg, M. Increased cell surface hydrophobicity of a Serratia marcescens NS 38 mutant lacking wetting activity. J Bacteriol 1988; 170: 4361–4.CrossRefGoogle ScholarPubMed
20.Van Oss, CJ. Phagocytosis as a surface phenomenon. Ann Rev Microbiol 1978; 32: 1939.CrossRefGoogle ScholarPubMed
21.Burry, AW, Wood, JG. Contributions of lipids and proteins to the surface charge of membranes. J Cell Biol 1979; 82: 726–41.CrossRefGoogle Scholar
22.Eylar, EH. Madoff, MA, Brody, OV. Oncey, JL. The contribution of sialic acid to the charge of the erythrocyte. J Biol Chem 1962: 237: 19922000.CrossRefGoogle Scholar